CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-07-24
Cited: 0
Clicked: 2803
Peng ZHOU, Jianhui XU, Changjie XU, Guangwei CAO, Jie CUI, Xuanming DING. Influence of the penetration of adjacent X-section cast-in-place concrete (XCC) pile on the existing XCC pile in sand[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300384 @article{title="Influence of the penetration of adjacent X-section cast-in-place concrete (XCC) pile on the existing XCC pile in sand", %0 Journal Article TY - JOUR
砂土中相邻现浇X形混凝土(XCC)桩贯入对既有XCC桩的影响研究机构:1华东交通大学,土木建筑学院,轨道交通基础设施性能监测与保障国家重点实验室,中国南昌,330013;2广州大学,工程抗震研究中心,广东省地震工程与应用技术重点实验室,中国广州,510006;3重庆大学,土木工程学院,中国重庆,400045;4福州大学,紫金地质与矿业学院,中国福州,350116 目的:在实际工程施工过程中,由于XCC桩属于挤土桩,其安装或沉桩过程将使桩周土体产生变形,而这种挤土荷载(尤其是侧向挤土位移)会对既有桩施加附加的桩身响应,从而导致桩基破坏。本文旨在探讨砂土中相邻XCC桩贯入对既有XCC桩的影响,研究贯入过程中不同土体相对密实度和既有桩截面几何形状的情形下既有桩侧向响应及桩周土体应力的发展规律。 创新点:1.探讨了相对密实度和截面几何形状对既有桩侧向响应的影响;2.揭示了贯入过程中既有桩桩周土体应力变化规律。 方法:1.基于沉桩加载模型试验系统,开展一系列砂土中相邻XCC桩贯入对既有XCC桩影响的1g模型试验;2.考虑土体相对密实度和既有桩截面几何效应的影响,获得砂土中相邻XCC桩贯入过程中既有XCC桩的侧向响应以及桩周土体应力变化的趋势。 结论:1.既有XCC桩侧向响应对相对密实度和截面几何效应的变化很敏感,主要表现为既有XCC桩的弯矩随着它们的增加而增大;2.既有XCC桩周围不同深度的土体径向应力随贯入深度的变化呈现出不同的发展趋势,而且由于既有桩的遮挡效应,土体的径向应力的变化不再表现出"h/R效应";3.径向应力峰值σ’r_max/σ’v0随着径向距离r/R的增加而以指数函数的形式减小,松砂中σ’r_max/σ’v0随r/R的衰减指数要大于中密砂和密砂中的衰减指数。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AnusicI, LehaneBM, EiksundGR, et al., 2019. Influence of installation method on static lateral response of displacement piles in sand. Géotechnique Letters, 9(3):193-197. ![]() [2]ArshadMI, TehraniFS, PrezziM, et al., 2014. Experimental study of cone penetration in silica sand using digital image correlation. Géotechnique, 64(7):551-569. ![]() [3]ASTM (American Society for Testing and Materials), 2016a. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM D854. ASTM. ![]() [4]ASTM (American Society for Testing and Materials), 2016b. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, ASTM D4253-16. ASTM. ![]() [5]ASTM (American Society for Testing and Materials), 2016c. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, ASTM D4254-16. ASTM. ![]() [6]BoltonMD, GuiMW, GarnierJ, et al., 1999. Centrifuge cone penetration tests in sand. Géotechnique, 49(4):543-552. ![]() [7]CaoGW, ChenZX, WangCL, et al., 2020. Dynamic responses of offshore wind turbine considering soil nonlinearity and wind-wave load combinations. Ocean Engineering, 217:108155. ![]() [8]CaoGW, DingXM, YinZY, et al., 2021. A new soil reaction model for large-diameter monopiles in clay. Computers and Geotechnics, 137:104311. ![]() [9]DingXM, ChianSC, LianJ, et al., 2023. Wind-wave combined effect on dynamic response of soil-monopile-OWT system considering cyclic hydro-mechanical clay behavior. Computers and Geotechnics, 154:105124. ![]() [10]DongJM, ChenF, ZhouM, et al., 2018. Numerical analysis of the boundary effect in model tests for single pile under lateral load. Bulletin of Engineering Geology and the Environment, 77(3):1057-1068. ![]() [11]GuiMW, BoltonMD, GarnierJ, et al., 1998. Guidelines for cone penetration tests in sand. International Conference on Centrifuge 98, p.155-160. ![]() [12]JardineRJ, ZhuBT, ForayP, et al., 2013a. Measurement of stresses around closed-ended displacement piles in sand. Géotechnique, 63(1):1-17. ![]() [13]JardineRJ, ZhuBT, ForayP, et al., 2013b. Interpretation of stress measurements made around closed-ended displacement piles in sand. Géotechnique, 63(8):613-627. ![]() [14]LiXC, ZhouH, LiuHL, et al., 2021. Three‐dimensional analytical continuum model for axially loaded noncircular piles in multilayered elastic soil. International Journal for Numerical and Analytical Methods in Geomechanics, 45(18):2654-2681. ![]() [15]LiuHL, ZhouH, KongGQ, 2014. XCC pile installation effect in soft soil ground: a simplified analytical model. Computers and Geotechnics, 62:268-282. ![]() [16]LvYR, ZhangDD, 2018. Geometrical effects on the load transfer mechanism of pile groups: three-dimensional numerical analysis. Canadian Geotechnical Journal, 55(5):749-757. ![]() [17]LvYR, LiuHL, DingXM, et al., 2012. Field tests on bearing characteristics of X-section pile composite foundation. Journal of Performance of Constructed Facilities, 26(2):180-189. ![]() [18]LvYR, LiuHL, NgCWW, et al., 2014a. A modified analytical solution of soil stress distribution for XCC pile foundations. Acta Geotechnica, 9(3):529-546. ![]() [19]LvYR, LiuHL, NgCWW, et al., 2014b. Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation. Computers and Geotechnics, 55:365-377. ![]() [20]LvYR, LiX, WangY, 2020. Centrifuge and numerical modeling of geometrical effects on XCC piled rafts. Soils and Foundations, 60(6):1405-1421. ![]() [21]PengY, LiuHL, LiC, et al., 2021. The detailed particle breakage around the pile in coral sand. Acta Geotechnica, 16(6):1971-1981. ![]() [22]PengY, DingXM, YinZY, et al., 2022. Micromechanical analysis of the particle corner breakage effect on pile penetration resistance and formation of breakage zones in coral sand. Ocean Engineering, 259:111859. ![]() [23]WangHL, ChenRP, 2019. Estimating static and dynamic stresses in geosynthetic-reinforced pile-supported track-bed under train moving loads. Journal of Geotechnical and Geoenvironmental Engineering, 145(7):04019029. ![]() [24]YangZX, JardineRJ, ZhuBT, et al., 2014. Stresses developed around displacement piles penetration in sand. Journal of Geotechnical and Geoenvironmental Engineering, 140(3):04013027. ![]() [25]YangZX, GaoYY, JardineRJ, et al., 2020. Large deformation finite-element simulation of displacement-pile installation experiments in sand. Journal of Geotechnical and Geoenvironmental Engineering, 146(6):04020044. ![]() [26]ZhangDD, LvYR, LiuHL, et al., 2015. An analytical solution for load transfer mechanism of XCC pile foundations. Computers and Geotechnics, 67:223-228. ![]() [27]ZhouH, 2017. Complex variable solution for boundary value problem with X-shaped cavity in plane elasticity and its application. Applied Mathematics and Mechanics, 38(9):1329-1346. ![]() [28]ZhouH, LiuHL, RandolphMF, et al., 2017. Experimental and analytical study of X-section cast-in-place concrete pile installation effect. International Journal of Physical Modelling in Geotechnics, 17(2):103-121. ![]() [29]ZhouH, YuanJR, LiuHL, et al., 2018a. Analytical model for evaluating XCC pile shaft capacity in soft soil by incorporating penetration effects. Soils and Foundations, 58(5):1093-1112. ![]() [30]ZhouH, LiuHL, WangLH, et al., 2018b. Finite element limit analysis of ultimate lateral pressure of XCC pile in undrained clay. Computers and Geotechnics, 95:240-246. ![]() [31]ZhouH, YuanJR, LiuHL, 2019a. A general analytical solution for lateral soil response of non-circular cross-sectional pile segment. Applied Mathematical Modelling, 71:601-631. ![]() [32]ZhouH, LiuHL, YuanJR, et al., 2019b. Numerical simulation of XCC pile penetration in undrained clay. Computers and Geotechnics, 106:18-41. ![]() [33]ZhouH, LiuHL, LiYZ, et al., 2020a. Limit lateral resistance of XCC pile group in undrained soil. Acta Geotechnica, 15(6):1673-1683. ![]() [34]ZhouH, LiuHL, DingXM, et al., 2020b. A p–y curve model for laterally loaded XCC pile in soft clay. Acta Geotechnica, 15(11):3229-3242. ![]() [35]ZhouP, LiuHL, ZhouH, et al., 2022a. A lateral soil resistance model for XCC pile in soft clay considering the effect of the geometry of cross section. Acta Geotechnica, 17(10):4681-4697. ![]() [36]ZhouP, LiuHL, ZhouH, et al., 2022b. A simplified analysis approach for the effect of the installation of adjacent XCC pile on the existing single XCC pile in undrained clay. Acta Geotechnica, 17(12):5499-5519. ![]() [37]ZhouP, LiuHL, ZhouH, et al., 2024. Experimental study on the development of surrounding soil stress during XCC pile installation in sand. Acta Geotechnica, 19:4017-4035. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>