
CLC number:
On-line Access: 2024-12-06
Received: 2023-10-07
Revision Accepted: 2024-01-19
Crosschecked: 2024-12-06
Cited: 0
Clicked: 2881
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-4681-163X
https://orcid.org/0000-0002-6351-0062
https://orcid.org/0000-0002-2726-5936
https://orcid.org/0009-0004-4989-0590
https://orcid.org/0009-0008-6412-0438
https://orcid.org/0009-0005-7276-6982
Jin GUO, Xinghui TAN, Hai ZHU, Jiawang CHEN, Shidi JIN, Yuanjie CHEN, Jie CHEN, Ruiduo YIN. Design and performance study on adaptive sealing of a dry cabin for maintenance of submarine pipeline[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300507 @article{title="Design and performance study on adaptive sealing of a dry cabin for maintenance of submarine pipeline", %0 Journal Article TY - JOUR
用于维护海底管道的干舱自适应密封设计与性能研究机构:1浙江大学,海洋工程与技术研究所,中国舟山,316021;2浙江省计量科学研究院,中国杭州,310018;3浙江大学,海南研究院,中国三亚,572025;4东海实验室,中国舟山,316021 目的:以干式舱为基础的水下干式维护方法可以达到陆地上的维护质量。在干式舱和管道之间建立可靠的密封是形成干式环境的先决条件。本文旨在探讨气囊的物理特性对变形特性和密封性能的影响,并研究气囊在时变间隙条件下的自适应密封机制。 创新点:1.提出将非标准气囊应用于海底管道干舱的密封;2.提出气囊在时变间隙条件下的自适应密封机制。 方法:1.进行单轴试验,得到硅胶气囊的应力-应变构成模型;2.利用ABAQUS分析五种截面形状的密封气囊的密封性和受力特性;3.在间隙恒定的工作条件下,研究材料硬度、壁厚和充气压力对气囊变形、力学和密封特性的影响;4.研究所选安全气囊在时变间隙下的密封特性,并讨论安全气囊的自适应密封机理;5.进行全尺寸安全气囊压力试验,验证模拟结果的合理性。 结论:1.在满足密封的前提下,矩形截面安全气囊的米塞斯应力最小,可以提高安全气囊运行的安全性。2.安全气囊的接触应力峰值与气压大小接近,因此安全气囊的硬度对接触应力峰值几乎没有影响;硬度对安全气囊的米塞斯应力有轻微影响。3.厚气囊产生的接触应力更大,因此密封性能随着壁厚的增加而提高;随着壁厚的增加,气囊的变形程度减小,气囊的米塞斯应力呈下降趋势;但是,大的壁厚导致气囊的延展性较差,且气囊膨胀所能填充的间隙较小。4.在间隙时变条件下,随着间隙的增大,所需的气体压力也随之增大;米塞斯应力峰值随气囊膨胀量的增加而增加,且趋势与气体压力的趋势相似;间隙与气压之间的模拟关系可以指导干式座舱实际运行时安全气囊气压的控制。5.气囊膨胀试验结果与模拟结果的最大差值仅0.4 mm,且气囊压力结果与模拟结果的最大差值仅3.0%,这表明利用ABAQUS可以准确研究气囊的充气变形和密封特性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AnimahI, ShafieeM, 2018. Condition assessment, remaining useful life prediction and life extension decision making for offshore oil and gas assets. Journal of Loss Prevention in the Process Industries, 53:17-28. ![]() [2]BadidaP, BalasubramaniamY, JayaprakashY, 2019. Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis. Journal of Natural Gas Science and Engineering, 66:284-292. ![]() [3]BergeM, BirdsallL, EricksonA, et al., 2008. Underwater habitat clamp (UHC): an innovative partnership in underwater pipeline repair. Proceedings of the 7th International Pipeline Conference, p.193-200. ![]() [4]ChenJ, ZhengYX, ZhongXK, et al., 2023. Working mechanism and testing of emergency reinforced airbag used for blocking in tunnels. Tunnelling and Underground Space Technology, 138:105201. ![]() [5]ChenY, ChenGP, HeH, 2019. Simulation of a folded airbag inflating underwater with IMM method. IOP Conference Series: Materials Science and Engineering, 531:012004. ![]() [6]CuiKB, QinJQ, DiCC, et al., 2013. Finite element analysis and simulation of the sealing performance of Y-ring rubber seal. Applied Mechanics and Materials, 444-445:1379-1383. ![]() [7]DongJH, LiuSH, ZhangH, et al., 2021. Experiment and simulation of a controllable multi-airbag sealing disc of pipeline inspection gauges (PIGs). International Journal of Pressure Vessels and Piping, 192:104422. ![]() [8]DrumondGP, PasqualinoIP, PinheiroBC, et al., 2018. Pipelines, risers and umbilicals failures: a literature review. Ocean Engineering, 148:412-425. ![]() [9]EisenreichN, NeutzJ, SeilerF, et al., 2007. Airbag for the closing of pipelines on explosions and leakages. Journal of Loss Prevention in the Process Industries, 20(4-6):589-598. ![]() [10]FleuryG, SchofieldR, 1979. Dry habitat connections and repairs of subsea pipe-line and structures. Proceedings of the Middle East Technical Conference and Exhibition. ![]() [11]GaudianoAV, 1975. A summary of 26 underwater welding habitat jobs. Proceedings of the Offshore Technology Conference. ![]() [12]GucmaL, ZalewskiP, 2003. Damage probability of offshore pipelines due to anchoring ships. Polish Maritime Research, 10(4):6-12. ![]() [13]GuoJ, ZhouQX, TanXH, et al., 2024. Study on sealing performance and optimization design of a new type non-standard seal strip of submarine pipeline maintenance dry cabin. Ocean Engineering, 292:116508. ![]() [14]HuonC, TiwariA, RotellaC, et al., 2022. Air, helium and water leakage in rubber O-ring seals with application to syringes. Tribology Letters, 70(2):35. ![]() [15]JiangLM, ZhangYH, HuangZA, et al., 2012. Experimental study of fast sealing airbag in simulating tunnel. Procedia Engineering, 45:780-785. ![]() [16]LanWJ, WangHX, ZhangX, et al., 2019. Sealing properties and structure optimization of packer rubber under high pressure and high temperature. Petroleum Science, 16(3):632-644. ![]() [17]Lee ToupsE, MorrisonRJ, HarperRJ, 2021. Development of a micro-habitat hyperbaric welding system. Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference. ![]() [18]LiXH, ChenGM, ZhuHW, 2016. Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network. Process Safety and Environmental Protection, 103:163-173. ![]() [19]LiuY, QianLQ, ZouJY, et al., 2022. Study on failure mechanism and sealing performance optimization of compression packer. Engineering Failure Analysis, 136:106176. ![]() [20]MaL, LiuSM, WeiGM, et al., 2022. Dynamic response characteristics of a sealing airbag under different impact types and impact pressures. ACS Omega, 7(43):38589-38599. ![]() [21]MaoDF, ChuG, YangL, et al., 2015. Deepwater pipeline damage and research on countermeasure. Aquatic Procedia, 3:180-190. ![]() [22]MooneyM, 1940. A theory of large elastic deformation. Journal of Applied Physics, 11(9):582-592. ![]() [23]PrattJA, PriestT, CastanedaCJ, 1997. Offshore Pioneers: Brown & Root and the History of Offshore Oil and Gas. Elsevier, Amsterdam, the Netherlands. ![]() [24]RivlinRS, 1948. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 241(835):379-397. ![]() [25]RivlinRS, SaundersDW, 1951. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 243(865):251-288. ![]() [26]TronskarJP, LeeCG, 2016. Cofferdam and hyperbaric “live” repair of gas pipeline leaks. Proceedings of the ASME 35th International Conference on Ocean, Offshore and Arctic Engineering. ![]() [27]VernonT, WernerB, 2009. Authentic innovation: the role of apprenctice learning in engineering education. Proceedings of the ASME International Mechanical Engineering Congress and Exposition. ![]() [28]WuD, WangSP, WangXJ, 2017. A novel stress distribution analytical model of O-ring seals under different properties of materials. Journal of Mechanical Science and Technology, 31(1):289-296. ![]() [29]WuJB, LiL, 2022. Influence of ambient pressure on sealing performance of O-ring in deep-sea hydraulic system. Ocean Engineering, 245:110440. ![]() [30]YangYS, KhanF, ThodiP, et al., 2017. Corrosion induced failure analysis of subsea pipelines. Reliability Engineering & System Safety, 159:214-222. ![]() [31]ZhouSM, ChenP, ShiY, 2015. Analysis on sealing performance for a new type of rubber saddle-shaped sealing ring based on AQAQUS. Procedia Engineering, 130:1000-1009. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>