
CLC number:
On-line Access: 2025-11-24
Received: 2024-11-08
Revision Accepted: 2025-03-24
Crosschecked: 2025-11-25
Cited: 0
Clicked: 1338
He YANG, Liya HUANG, Jiarui ZHANG, Kun LIANG, Mingquan GONG. Numerical investigation of the detonation wave characteristics of boron-based gel propellant[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400520 @article{title="Numerical investigation of the detonation wave characteristics of boron-based gel propellant", %0 Journal Article TY - JOUR
含硼凝胶推进剂爆震波特性数值模拟研究机构:国防科技大学,空天科学学院,中国长沙,410073 目的:凝胶推进剂集成了液体推进剂和固体推进剂的优势,而添加硼等固体颗粒可以有效提高其能量密度,所以将凝胶推进剂应用于爆震燃烧具有广阔前景。本文旨在运用经过试验验证的数值仿真模型,分析含硼凝胶推进剂爆震波内流场结构及其影响因素,获得含硼凝胶推进剂爆震波特性,为凝胶推进剂应用于爆震燃烧提供理论支撑。 创新点:1.提出将含硼凝胶推进剂应用于爆震燃烧,分析了含硼凝胶推进剂的爆震过程;2.建立并验证了含硼凝胶推进剂爆震模型,获得了含硼凝胶推进剂爆震波特性。 方法:1.通过理论推导,分析含硼凝胶推进剂爆震波传播过程,并构建含硼凝胶推进剂爆震模型(图1,公式(1)~(7));2.通过试验分析,获得对应工况下含硼凝胶推进剂爆震试验值与模拟值的偏差,验证所建立模型的准确性(图4);3.通过仿真模拟,分析不同工况下含硼凝胶推进剂爆震波内流场参数分布情况,揭示其爆震波传播特性(图5~10)。 结论:1.本文研究条件下,含硼凝胶推进剂爆震波压强最高可达6.15 MPa,且特征值爆震速度可达1831.5 m/s;2.含硼凝胶推进剂爆震波仅在特征值爆震速度下实现自维持稳定传播;3.稳定传播爆震波声速面处的压强、气相温度与密度及颗粒相温度随来流温度的增加而下降,随推进剂硼含量的增加而上升,随反应当量比的增加先上升后下降。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ChenW, ZhangMZ, 2011. The current status and future prospects of gel propellants. The 5th National Conference on Chemical Propellant(in Chinese). ![]() [2]DuanL, XiaZX, FengYC, et al., 2023. Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres. Journal of Zhejiang University-SCIENCE A, 24(11):949-959. ![]() [3]FanWJ, ZhouJ, LiuSJ, et al., 2021. Effects of the geometrical parameters of the injection nozzle on ethylene-air continuous rotating detonation. Journal of Zhejiang University-SCIENCE A, 22(7):547-563. ![]() [4]FanWJ, LiuWD, PengHY, et al., 2022. Numerical study on ethylene-air continuous rotating detonation in annular combustors with different widths. Journal of Zhejiang University-SCIENCE A, 23(5):388-404. ![]() [5]FoelscheRO, BurtonRL, KrierH, 1999. Boron particle ignition and combustion at 30-150 atm. Combustion and Flame, 117(1-2):32-58. ![]() [6]GlushkovDO, PaushkinaKK, PleshkoAO, et al., 2023. Ignition and combustion behavior of gel fuel particles with metal and non-metal additives. Acta Astronautica, 202:637-652. ![]() [7]HanJX, BaiQD, ZhangSJ, et al., 2022. Experimental study on propagation characteristics of rotating detonation wave with kerosene fuel-rich gas. Defence Technology, 18(8):1498-1512. ![]() [8]HongT, QinCS, LinWZ, 2009. Numerical simulation of detonation in suspended mixed RDX and aluminum dust. Explosion and Shock Waves, 29(5):468-473 (in Chinese). ![]() [9]HuHB, WengCS, 2011. One dimensional numerical calculation for influence of aluminum concentration on multiphase detonation of suspended gasoline/nano-aluminum-powder liquid drops. Journal of Rocket Propulsion, 37(5):47-51 (in Chinese). ![]() [10]HuHB, WengCS, 2016. Transient characteristics for working process of pulse detonation engine with aluminized gelled fuels. Journal of Solid Rocket Technology, 39(4):463-469 (in Chinese). ![]() [11]HuangLY, GongMQ, ZhangJR, et al., 2024. High-energy-density metallized gel propellant by hydrogen-bonded polymer-small molecules for enhanced stability and shear-thinning performance. Acta Astronautica, 214:356-365. ![]() [12]JinYS, XuX, YangQC, et al., 2022. Combustion behavior of hydrocarbon/boron gel-fueled scramjet. AIAA Journal, 60(6):3834-3843. ![]() [13]KingMK, 1972. Boron ignition and combustion in air-augmented rocket afterburners. Combustion Science and Technology, 5(1):155-164. ![]() [14]KüçükosmanR, DeğirmenciH, YontarAA, et al., 2023. Combustion characteristics of gasoline fuel droplets containing boron-based particles. Combustion and Flame, 255:112887. ![]() [15]LeiZD, ChenZW, YangXQ, et al., 2020. Operational mode transition in a rotating detonation engine. Journal of Zhejiang University-SCIENCE A, 21(9):721-733. ![]() [16]LiJL, FanW, YanCJ, et al., 2009. Experimental investigations on detonation initiation in a kerosene-oxygen pulse detonation rocket engine. Combustion Science and Technology, 181(3):417-432. ![]() [17]LiJL, FanW, YanCJ, et al., 2011. Performance enhancement of a pulse detonation rocket engine. Proceedings of the Combustion Institute, 33(2):2243-2254. ![]() [18]LiSC, WilliamsFA, 1991. Ignition and combustion of boron in wet and dry atmospheres. Symposium (International) on Combustion, 23(1):1147-1154. ![]() [19]LiangK, HuangLY, ZhangJR, et al., 2024. Experimental investigation on detonation characteristics of boron-rich gelled propellant in static premixed combustible gases. Acta Astronautica, 220:263-273. ![]() [20]LiangX, WangRL, 2019. Verification and validation of detonation modeling. Defence Technology, 15(3):398-408. ![]() [21]LiuJD, XiaoW, DaiJ, 2024. The influence of supersonic spatial-temporal coupling disturbance on detonation in an expanded chamber. Aerospace Science and Technology, 147:109024. ![]() [22]LiuL, XiaZX, HuangLY, et al., 2020. Numerical investigation of one-dimensional unsteady detonation wave characteristics of magnesium particle-air mixture. Acta Physica Sinica, 69(19):194701 (in Chinese). ![]() [23]LiuWD, PengHY, LiuSJ, et al., 2023. Research progresses of rotating detonation combustion and its application. Acta Aeronautica et Astronautica Sinica, 44(15):528875 (in Chinese). ![]() [24]LuXY, KaplanCR, OranES, 2021. A chemical-diffusive model for simulating detonative combustion with constrained detonation cell sizes. Combustion and Flame, 230:111417. ![]() [25]MengHL, XiaoQ, FengWK, et al., 2022. Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor. Aerospace Science and Technology, 122:107407. ![]() [26]MiaoSK, ZhouJ, LiuY, et al., 2019. Review of studies on oblique detonation waves in supersonic flows. Journal of Experiments in Fluid Mechanics, 33(1):41-53 (in Chinese). ![]() [27]NachmoniG, NatanB, 2000. Combustion characteristics of gel fuels. Combustion Science and Technology, 156(1):139-157. ![]() [28]PadwalMB, NatanB, MishraDP, 2021. Gel propellants. Progress in Energy and Combustion Science, 83:100885. ![]() [29]PalaszewskiB, JurnsJ, BreisacherK, et al., 2004. Metallized gelled propellants combustion experiments in a pulse detonation engine. The 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. ![]() [30]PangWQ, YetterRA, DelucaLT, et al., 2022. Boron-based composite energetic materials (B-CEMs): preparation, combustion and applications. Progress in Energy and Combustion Science, 93:101038. ![]() [31]Rojas ChavezSB, ChatelainKP, LacosteDA, 2023. Two-dimensional visualization of induction zone in hydrogen detonations. Combustion and Flame, 255:112905. ![]() [32]SalvadoriM, PanchalA, MenonS, 2023. Simulation of liquid droplets combustion in a rotating detonation engine. Proceedings of the Combustion Institute, 39(3):3063-3072. ![]() [33]SchumakerSA, KniselyAM, HokeJL, et al., 2021. Methane–oxygen detonation characteristics at elevated pre-detonation pressures. Proceedings of the Combustion Institute, 38(3):3623-3632. ![]() [34]ShaoYT, LiuM, WangJP, 2010. Numerical investigation of rotating detonation engine propulsive performance. Combustion Science and Technology, 182(11-12):1586-1597. ![]() [35]ShenDW, MaJZ, ShengZH, et al., 2022. Spinning pulsed detonation in rotating detonation engine. Aerospace Science and Technology, 126:107661. ![]() [36]SunHJ, ZhangHB, BaiBF, 2008. Evaporation investigation of single droplet in high temperature fuel gas. Journal of Xi’an Jiaotong University, 42(7):833-837 (in Chinese). ![]() [37]SunZP, HuangY, LuanZY, et al., 2023. Three-dimensional simulation of a rotating detonation engine in ammonia/hydrogen mixtures and oxygen-enriched air. International Journal of Hydrogen Energy, 48(12):4891-4905. ![]() [38]von KampenJ, AlberioF, CiezkiHK, 2007. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector. Aerospace Science and Technology, 11(1):77-83. ![]() [39]WangF, WengCS, 2022. Numerical research on two-phase kerosene/air rotating detonation engines. Acta Astronautica, 192:199-209. ![]() [40]WangZG, LiangJH, DingM, et al., 2009. A review on hypersonic airbreathing propulsion system. Advances in Mechanics, 39(6):716-739 (in Chinese). ![]() [41]YangDL, XiaZX, HuangLY, et al., 2018. Exprimental study on the evaporation characteristics of the kerosene gel droplet. Experimental Thermal and Fluid Science, 93:171-177. ![]() [42]YuanJF, LiuJZ, ZhangLQ, et al., 2021. Combustion and agglomeration characteristics of boron particles in boron-containing fuel-rich propellant. Combustion and Flame, 232:111551. ![]() [43]ZhouJH, LiuJZ, ZhangYW, et al., 2015. Ignition and Combustion of Boron. Science Press, Beijing, China(in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>