
CLC number:
On-line Access: 2025-11-24
Received: 2024-11-18
Revision Accepted: 2025-02-06
Crosschecked: 2025-11-25
Cited: 0
Clicked: 1393
Yi CHEN, Wenwei FU, Yaozhi LUO, Yanbin SHEN, Hui YANG, Shiying WANG. A two-stage framework for automated operational modal identification using OPTICS-KNN-based clustering[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400538 @article{title="A two-stage framework for automated operational modal identification using OPTICS-KNN-based clustering", %0 Journal Article TY - JOUR
基于OPTICS-KNN聚类的两阶段自动模态参数识别方法机构:1浙江大学,建筑工程学院,中国杭州,310058;2浙江交工集团股份有限公司,中国杭州,310051;3苏州科技大学,土木工程学院,中国苏州,215011;4浙江大学长三角智慧绿洲研究中心,未来城市实验室,中国嘉兴,314102;5杭州市交通规划设计研究院有限公司,中国杭州,310030 目的:自动化工作模态分析(AOMA)能够有效替代依赖人工干预和工程经验判断的传统模态参数识别方法。本研究提出一种融合协方差驱动随机子空间识别、稳定图自动判读以及密度聚类算法(OPTICS)自适应聚类策略的自动化模态识别框架,有效解决了传统模态参数识别方法的局限性。通过十层剪切框架数值模型和斜拉桥实测数据验证,该方法实现了高精度模态参数自动识别,具备应用于复杂工程结构实时监测的潜力。 创新点:1.采用两种广泛应用的模态验证准则对稳定图进行预处理,以消除部分虚假模态并提高聚类阶段的计算效率;2.通过k近邻算法(KNN)确定最优聚类数量,并基于OPTICS算法实现自动化真实模态聚类。 方法:1.采用协方差驱动随机子空间识别实现结构模态参数提取;2.基于软硬准则开展稳定图的自动化初筛;3.结合OPTICS算法与k-近邻算法实现自适应物理模态聚类。 结论:1.根据十层框架结构与桃夭门大桥的模态参数识别结果,结构的各阶模态频率与阻尼比均保持较小的波动范围,这表明该方法能有效剔除虚假模态并准确识别真实模态。2.该方法对密集模态具有良好辨识能力,在无需预先设定聚类数量或设定聚类阈值的情况下,成功实现此类模态的精准识别。3.通过对桃夭门大桥的监测数据进行分析,进一步验证了该方法在工程实践中的实用性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abu AlfeilatHA, HassanatABA, LasassmehO, et al., 2019. Effects of distance measure choice on K-nearest neighbor classifier performance: a review. Big Data, 7(4):221-248. ![]() [2]BoroschekRL, BilbaoJA, 2019. Interpretation of stabilization diagrams using density-based clustering algorithm. Engineering Structures, 178:245-257. ![]() [3]CabboiA, MagalhãesF, GentileC, et al., 2017. Automated modal identification and tracking: application to an iron arch bridge. Structural Control and Health Monitoring, 24(1):e1854. ![]() [4]ChenJ, XuYL, ZhangRC, 2004. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method. Journal of Wind Engineering and Industrial Aerodynamics, 92(10):805-827. ![]() [5]ChopraAK, 2017. Dynamics of Structures-Theory and Applications to Earthquake Engineering. Prentice Hall, Englewood Cliffs, USA. ![]() [6]CiveraM, MugnainiV, FragonaraLZ, 2022. Machine learning-based automatic operational modal analysis: a structural health monitoring application to masonry arch bridges. Structural Control and Health Monitoring, 29:e3028. ![]() [7]CiveraM, SibilleL, FragonaraLZ, et al., 2023. A DBSCAN-based automated operational modal analysis algorithm for bridge monitoring. Measurement, 208:112451. ![]() [8]DesjardinsS, LauD, 2022. Advances in intelligent long-term vibration-based structural health-monitoring systems for bridges. Advances in Structural Engineering, 25(7):1413-1430. ![]() [9]DöhlerM, MevelL, 2013. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366. ![]() [10]DoroudiR, Hosseini LavassaniSH, ShahrouziM, et al., 2022. Identifying the dynamic characteristics of super tall buildings by multivariate empirical mode decomposition. Structural Control and Health Monitoring, 29(3):e3075. ![]() [11]EreizS, DuvnjakI, Jiménez-AlonsoJF, 2022. Review of finite element model updating methods for structural applications. Structures, 41:684-723. ![]() [12]EwinsDJ, 2003. Modal Testing: Theory, Practice and Application. Research Students Press LTD., Baldock, UK. ![]() [13]FanG, LiJ, HaoH, 2019. Improved automated operational modal identification of structures based on clustering. Structural Control and Health Monitoring, 26(12):1-23. ![]() [14]FarrarCR, WordenK, 2007. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):303-315. ![]() [15]FengYH, SuYH, ZhaoC, et al., 2024. A two-stage automated OMA framework for transmission towers based on clustering algorithms. Structures, 61:106023. ![]() [16]García-PedrajasN, del CastilloJAR, Cerruela-GarcíaG, 2017. A proposal for local k values for k-nearest neighbor rule. IEEE Transactions on Neural Networks and Learning Systems, 28(2):470-475. ![]() [17]Garcia-PerezA, Amezquita-SanchezJP, Dominguez-GonzalezA, et al., 2013. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. Journal of Zhejiang University-SCIENCE A, 14(9):615-630. ![]() [18]GreśS, DöhlerM, AndersenP, et al., 2021. Uncertainty quantification for the modal phase collinearity of complex mode shapes. Mechanical Systems and Signal Processing, 152:107436. ![]() [19]GuJF, GulM, WuXG, 2017. Damage detection under varying temperature using artificial neural networks. Structural Control and Health Monitoring, 24(11):e1998. ![]() [20]HeM, LiangP, LiJ, et al., 2021. Fully automated precise operational modal identification. Engineering Structures, 234:111988. ![]() [21]HeY, YangJP, LiYF, 2022. A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering. Engineering Structures, 255:113891. ![]() [22]HouRR, XiaY, 2021. Review on the new development of vibration-based damage identification for civil engineering structures: 2010-2019. Journal of Sound and Vibration, 491:115741. ![]() [23]HuangCS, LeQT, SuWC, et al., 2020. Wavelet-based approach of time series model for modal identification of a bridge with incomplete input. Computer-Aided Civil and Infrastructure Engineering, 35(9):947-964. ![]() [24]JeongS, FergusonM, HouR, et al., 2019. Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring. Advanced Engineering Informatics, 42:100991. ![]() [25]JinSS, JeongS, SimSH, et al., 2021. Fully automated peak-picking method for an autonomous stay-cable monitoring system in cable-stayed bridges. Automation in Construction, 126:103628. ![]() [26]KangF, LiJJ, 2020. Displacement model for concrete dam safety monitoring via Gaussian process regression considering extreme air temperature. Journal of Structural Engineering, 146(1):05019001. ![]() [27]LiuDW, BaoYQ, LiH, 2023. Machine learning-based stochastic subspace identification method for structural modal parameters. Engineering Structures, 274:115178. ![]() [28]LiuYC, LohCH, NiYQ, 2013. Stochastic subspace identification for output-only modal analysis: application to super high-rise tower under abnormal loading condition. Earthquake Engineering & Structural Dynamics, 42(4):477-498. ![]() [29]LuoYZ, ChenY, WanHP, et al., 2021. Development of laser-based displacement monitoring system and its application to large-scale spatial structures. Journal of Civil Structural Health Monitoring, 11(2):381-395. ![]() [30]LuoYZ, FuWW, WanHP, et al., 2022. Load-effect separation of a large-span prestressed structure based on an enhanced EEMD-ICA methodology. Journal of Structural Engineering, 148(3):04021288. ![]() [31]MaoJX, WangH, FuYG, et al., 2019. Automated modal identification using principal component and cluster analysis: application to a long-span cable-stayed bridge. Structural Control and Health Monitoring, 26(10):e2430. ![]() [32]McLachlanGJ, LeeSX, RathnayakeSI, 2019. Finite mixture models. Annual Review of Statistics and Its Application, 6:355-378. ![]() [33]MostafaeiH, GhamamiM, AghabozorgiP, 2021. Modal identification of concrete arch dam by fully automated operational modal identification. Structures, 32:228-236. ![]() [34]MugnainiV, FragonaraLZ, CiveraM, 2022. A machine learning approach for automatic operational modal analysis. Mechanical Systems and Signal Processing, 170:108813. ![]() [35]NeuE, JanserF, KhatibiAA, et al., 2017. Fully automated operational modal analysis using multi-stage clustering. Mechanical Systems and Signal Processing, 84:308-323. ![]() [36]NiYQ, WangYW, ZhangC, 2020. A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data. Engineering Structures, 212:110520. ![]() [37]PanYX, VenturaCE, XiongHB, et al., 2020. Model updating and seismic response of a super tall building in Shanghai. Computers & Structures, 239:106285. ![]() [38]PeetersB, de RoeckG, 1999. Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing, 13(6):855-878. ![]() [39]PeetersB, LowetG, van der AuweraerH, et al., 2004. A new procedure for modal parameter estimation. Sound and Vibration, 38(1):24-29. ![]() [40]RainieriC, FabbrocinoG, 2014. Operational Modal Analysis of Civil Engineering Structures. Springer, New York, USA. ![]() [41]RanL, DingY, ChenQZ, et al., 2023. Influence of adjacent shield tunneling construction on existing tunnel settlement: field monitoring and intelligent prediction. Journal of Zhejiang University-SCIENCE A, 24(12):1106-1119. ![]() [42]RenWX, ZongZH, 2004. Output-only modal parameter identification of civil engineering structures. Structural Engineering and Mechanics, 17(3-4):429-444. ![]() [43]ReyndersE, de RoeckG, 2008. Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis. Mechanical Systems and Signal Processing, 22(3):617-637. ![]() [44]ReyndersE, PintelonR, de RoeckG, 2008. Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mechanical Systems and Signal Processing, 22(4):948-969. ![]() [45]ReyndersE, MaesK, LombaertG, et al., 2016. Uncertainty quantification in operational modal analysis with stochastic subspace identification: validation and applications. Mechanical Systems and Signal Processing, 66-67:13-30. ![]() [46]SadeqiA, EsfandiariA, SanayeiM, et al., 2022. Automated operational modal analysis based on long-term records: a case study of Milad Tower structural health monitoring. Structural Control and Health Monitoring, 29(10):e3037. ![]() [47]SaxenaA, PrasadM, GuptaA, et al., 2017. A review of clustering techniques and developments. Neurocomputing, 267:664-681. ![]() [48]SunLM, ShangZQ, XiaY, et al., 2020. Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection. Journal of Structural Engineering, 146(5):04020073. ![]() [49]SunM, AlamdariMM, KalhoriH, 2017. Automated operational modal analysis of a cable-stayed bridge. Journal of Bridge Engineering, 22(12):05017012. ![]() [50]WuWH, WangSW, ChenCC, et al., 2019. Modal parameter identification for closely spaced modes of civil structures based on an upgraded stochastic subspace methodology. Structure and Infrastructure Engineering, 15(3):296-313. ![]() [51]WuY, FuHR, BianXC, et al., 2023. Impact of extreme climate and train traffic loads on the performance of high-speed railway geotechnical infrastructures. Journal of Zhejiang University-SCIENCE A, 24(3):189-205. ![]() [52]YaghoubiV, VakilzadehMK, AbrahamssonTJS, 2018. Automated modal parameter estimation using correlation analysis and bootstrap sampling. Mechanical Systems and Signal Processing, 100:289-310. ![]() [53]YunCB, ChoS, ParkHJ, et al., 2014. Smart wireless sensing and assessment for civil infrastructure. Structure and Infrastructure Engineering, 10(4):534-550. ![]() [54]ZengJC, HuZ, 2022. Automated operational modal analysis using variational Gaussian mixture model. Engineering Structures, 273:115139. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>