Full Text:  <4167>

Summary:  <2380>

CLC number: Q819

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-03-18

Cited: 5

Clicked: 9671

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Optimization of the quenching method for metabolomics analysis of


Author(s):  Ming-ming Chen1, Ai-li Li1, Mao-cheng Sun2, Zhen Feng1, Xiang-chen Meng1, Ying Wang1

Affiliation(s):  1. MOE Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China;2. School of Public Health, Jilin Medical College, Jilin 132013, China

Corresponding email(s):  aili-mail@163.com

Key Words:  Metabolomics, Quenching method, , Leakage


Share this article to: More <<< Previous Paper|Next Paper >>>

Ming-ming Chen, Ai-li Li, Mao-cheng Sun, Zhen Feng, Xiang-chen Meng, Ying Wang. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1300149

@article{title="Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus",
author="Ming-ming Chen, Ai-li Li, Mao-cheng Sun, Zhen Feng, Xiang-chen Meng, Ying Wang",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B1300149"
}

%0 Journal Article
%T Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus
%A Ming-ming Chen
%A Ai-li Li
%A Mao-cheng Sun
%A Zhen Feng
%A Xiang-chen Meng
%A Ying Wang
%J Journal of Zhejiang University SCIENCE B
%P 333-342
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B1300149"

TY - JOUR
T1 - Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus
A1 - Ming-ming Chen
A1 - Ai-li Li
A1 - Mao-cheng Sun
A1 - Zhen Feng
A1 - Xiang-chen Meng
A1 - Ying Wang
J0 - Journal of Zhejiang University Science B
SP - 333
EP - 342
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B1300149"


Abstract: 
This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.

保加利亚乳杆菌代谢组学中淬灭方法的优化研究

研究目的:为保加利亚乳杆菌的代谢组学研究提供一种简单有效的淬灭方案。
创新要点:采用适当的淬灭技术是获得微生物真实代谢物组数据的必要条件。本研究首次建立了适用于保加利亚乳杆菌代谢组学研究的淬灭方法,有助于完善乳酸菌代谢的生理学和遗传学概貌。
研究方法:分别应用−40 °C的60%甲醇/水、80%甲醇/水和80%甲醇/甘油三种方式淬灭保加利亚乳杆菌。利用光密度(OD)回收率实验、流式细胞术和气质联用(GC-MS)分析菌体细胞完整性和细胞内外代谢物,以及主成分分析法(PCA)和正交偏最小二乘法-判别分析法(OPLS-DA)分析代谢物泄露程度。
重要结论:80%冷甲醇/水更适用于淬灭保加利亚乳杆菌,能有效减少代谢物泄露程度和增加胞内代谢物水平。
代谢组学;淬灭处理;保加利亚乳杆菌;泄露

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bolten,C.J, Kiefer,P, Letisse,F, 2007, Sampling for metabolome analysis of microorganisms  Anal Chem, 79(10):3843-3849.


[2] Canelas,A.B, Ras,C, ten Pierick,A, 2008, Leakage-free rapid quenching technique for yeast metabolomics  Metabolomics, 4(3):226-239.


[3] Carvalho,A.S, Silva,J, Ho,P, 2004, Relevant factors for the preparation of freeze-dried lactic acid bacteria  Int Dairy J, 14(10):835-847.


[4] Castrillo,J.I, Hayes,A, Mohmmed,S, 2003, An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry  Phytochemistry, 62(6):929-937.


[5] Coulier,L, Bas,R, Jespersen,S, 2006, Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry  Anal Biochem, 78(18):6573-6582.


[6] Daz,M, Herrero,M, Garca,L.A, 2010, Application of flow cytometry to industrial microbial bioprocesses  Biochem Eng J, 48(3):385-407.


[7] Duetz,W.A, Witholt,B, 2004, Oxygen transfer by orbital shaking of square vessels and deep well microtiter plates of various dimensions  Biochem Eng J, 17(3):181-185.


[8] Faijes,M, Mars,A.E, Smid,E.J, 2007, Comparison of quenching and extraction methodologies for metabolome analysis of   Microb Cell Fact, 6():27-.


[9] Fonseca,F, Marin,M, Morris,G.J, 2006, Stabilization of frozen subsp. in glycerol suspensions: freezing kinetics and storage temperature effects  Appl Environ Microbiol, 72(10):6474-6482.


[10] Garbayo,I, Vlchez,C, Vega,J.M, 2004, Influence of immobilization parameters on growth and lactic acid production by and co-immobilized in calcium alginate gel beads  Biotechnol Lett, 26(23):1825-1827.


[11] Huang,L, Lu,Z, Yuan,Y, 2006, Optimization of a protective medium for enhancing the viability of freeze-dried subsp. based on response surface methodology  J Ind Microbiol Biotechnol, 33(1):55-61.


[12] Jana,S, Lorenz,C.R, Patricia,W, 2009, A method for enzyme quenching in microbial metabolome analysis successfully applied to Gram-positive and Gram-negative bacteria and yeast  Anal Biochem, 394(2):192-201.


[13] Koek,M.M, Muilwijk,B, van der Werf,M.J, 2006, Microbial metabolomics with gas chromatography/mass spectrometry  Anal Chem, 78(4):1272-1281.


[14] Kumar,S, Wittmann,C, Heinzle,E, 2004, Minibioreactors  Biotechnol Lett, 26(1):1-10.


[15] Lange,H.C, Eman,M, van Zuijlen,G, 2001, Improved rapid sampling for kinetics of intracellular metabolites in   Biotechnol Bioeng, 75(4):406-415.


[16] Li,C, Zhao,J.L, Wang,Y.T, 2009, Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of L2 at different growth conditions  World J Microbiol Biotechnol, 25(9):1659-1665.


[17] Link,H, Anselment,B, Weuster-Botz,D, 2008, Leakage of adenylates during cold methanol/glycerol quenching of   Metabolomics, 4(3):240-247.


[18] Meyer,H, Liebeke,M, Lalk,M, 2010, A protocol for the investigation of the intracellular metabolome  Anal Biochem, 401(2):250-259.


[19] Nielsen,J, 1997, Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates  Biochem J, 321():133-138.


[20] Oldiges,M, Ltz,S, Pflug,S, 2007, Metabolomics: current state and evolving methodologies and tools  Appl Microbiol Biotechnol, 76(3):495-511.


[21] Otto,R, Brink,B, Veldkamp,H, 1983, The relation between growth rate and electrochemical proton gradient of   FEMS Microbiol Lett, 16(1):69-74.


[22] Russell,J.B, Diez-Gonzalez,F, 1998, The effects of fermentation acids on bacterial growth  Adv Microb Physiol, 39():205-234.


[23] Schdel,F, David,F, Franco-Lara,E, 2011, Evaluation of cell damage caused by cold sampling and quenching for metabolome analysis  Appl Microbiol Biotechnol, 92(6):1261-1274.


[24] Schaefer,U, Boos,W, Takors,R, 1999, Automated sampling device for monitoring intracellular metabolites dynamics  Anal Biochem, 270(1):88-96.


[25] Schiraldi,C, Valli,C, Molinaro,A, 2006, Exopolysaccharides production in and exploiting microfiltration  J Ind Microbiol Biotechnol, 33(5):384-390.


[26] Siegumfeldt,H, Rechinger,K.B, Jakobsen,M, 2000, Dynamic changes of intracellular pH in individual lactic acid bacteria cells in response to a rapid drop in extracellular pH  Appl Environ Microbiol, 66(6):2330-2335.


[27] Spura,J, Reimer,L.C, Wieloch,P, 2009, A method for enzyme quenching in microbial metabolome analysis successfully applied to Gram-positive and Gram-negative bacteria and yeast  Anal Biochem, 394(2):192-201.


[28] Tang,Y.J, Martin,H.G, Myers,S, 2009, Advances in analysis of microbial metabolic fluxes via C isotopic labeling  Mass Spectrom Rev, 28(2):362-375.


[29] van Dam,J.C, Eman,M.R, Frank,J, 2002, Analysis of glycolytic intermediates in using anion exchange chromatography and electrospray ionisation with tandem mass spectrometric detection  Anal Chim Acta, 460(2):209-218.


[30] Villas-Bôas,S.G, Bruheim,P, 2007, Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells  Anal Biochem, 370(1):87-97.


[31] Wittmann,C, Krmer,J.O, Kiefer,P, 2004, Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria  Anal Biochem, 327(1):135-139.


[32] Wu,H, Southam,A.D, Hines,A, 2008, High-throughput tissue extraction protocol for NMR- and MS-based metabolomics  Anal Biochem, 372(2):204-212.



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE