CLC number: R741
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-02-18
Cited: 14
Clicked: 8289
Kinga Sa?at, Barbara Filipek. Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1400189 @article{title="Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice", %0 Journal Article TY - JOUR
瞬时受体电位通道TRPV1、TRPA1和TRPM8拮抗剂在小鼠神经源性和神经病理性疼痛模型中的镇痛作用目的:评价瞬时受体电位通道(TRP通道)TRPV1、TRPA1和TRPM8拮抗剂在小鼠神经源性、持续性和神经病理性疼痛模型中的作用。 方法:通过辣椒素实验、异硫氰酸烯丙酯(AITC)实验和福尔马林实验,评估TRP通道拮抗剂在小鼠神经源性疼痛模型中的镇痛作用;通过建立紫杉醇诱导的小鼠神经病理性疼痛模型,对TRP通道拮抗剂的抗痛觉(冷、热、触觉)过敏效应进行评估;通过旋转法实验对小鼠的运动协调性进行评估。 结论:TRP通道家族包含了不同的小鼠疼痛模型。TRP通道拮抗剂能减轻神经源性、持续性和神经病理性疼痛,但是其镇痛效果与疼痛模型有关。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alessandri-Haber, N., Dina, O.A., Yeh, J.J., et al., 2004. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci., 24(18):4444-4452. ![]() [2]Andoh, T., Sakamoto, A., Kuraishi, Y., 2013. Effects of xaliproden, a 5-HT1A agonist, on mechanical allodynia caused by chemotherapeutic agents in mice. Eur. J. Pharmacol., 721(1-3):231-236. ![]() [3]Authier, N., Balayssac, D., Marchand, F., et al., 2009. Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurotherapeutics, 6(4):620-629. ![]() [4]Bandell, M., Story, G.M., Hwang, S.W., et al., 2004. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41(6):849-857. ![]() [5]Bautista, D.M., Movahed, P., Hinman, A., et al., 2005. Pungent products from garlic activate the sensory ion channel TRPA1. PNAS, 102(34):12248-12252. ![]() [6]Bautista, D.M., Jordt, S.E., Nikai, T., et al., 2006. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124(6):1269-1282. ![]() [7]Beltrán, L.R., Dawid, C., Beltrán, M., et al., 2013. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK. Front. Pharmacol., 4:141. ![]() [8]Bennett, G.J., 2010. Pathophysiology and animal models of cancer-related painful peripheral neuropathy. Oncologist, 15(Suppl. 2):9-12. ![]() [9]Brederson, J.D., Kym, P.R., Szallasi, A., 2013. Targeting TRP channels for pain relief. Eur. J. Pharmacol., 716(1-3):61-76. ![]() [10]Callsen, M.G., Moller, A.T., Sorensen, K., et al., 2008. Cold hyposensitivity after topical application of capsaicin in humans. Exp. Brain Res., 191(4):447-452. ![]() [11]Chen, Y., Yang, C., Wang, Z.J., 2011. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience, 193:440-451. ![]() [12]Coste, O., Möser, C.V., Sisignano, M., et al., 2012. The p21-activated kinase PAK 5 is involved in formalin-induced nociception through regulation of MAP-kinase signaling and formalin-specific receptors. Behav. Brain Res., 234(1):121-128. ![]() [13]Docherty, R.J., Yeats, J.C., Piper, A.S., 1997. Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br. J. Pharmacol., 121(7):1461-1467. ![]() [14]Eddy, N.B., Leimbach, D., 1953. Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J. Pharmacol. Exp. Ther., 107(3):385-393. ![]() [15]Eid, S.R., Crown, E.D., Moore, E.L., et al., 2008. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain, 4:48. ![]() [16]Hara, T., Chiba, T., Abe, K., et al., 2013. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain, 154(6):882-889. ![]() [17]Islam, M.S., 2011. Transient Potential Receptor Channels. Advances in Experimental Medicine and Biology. Springer, Berlin, Germany, p.704-720. ![]() [18]Kerstein, P.C., del Camino, D., Moran, M.M., et al., 2009. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Mol. Pain, 5:19. ![]() [19]Lashinger, E.S., Steiginga, M.S., Hieble, J.P., et al., 2008. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am. J. Physiol. Renal Physiol., 295(3):F803-F810. ![]() [20]Laughlin, T.M., Tram, K.V., Wilcox, G.L., et al., 2002. Comparison of antiepileptic drugs tiagabine, lamotrigine, and gabapentin in mouse models of acute, prolonged, and chronic nociception. J. Pharmacol. Exp. Ther., 302(3):1168-1175. ![]() [21]Levine, J.D., Alessandri-Haber, N., 2007. TRP channels: targets for the relief of pain. Biochim. Biophys. Acta, 1772(8):989-1003. ![]() [22]Lopes, S.C., da Silva, A.V., Arruda, B.R., et al., 2013. Peripheral antinociceptive action of mangiferin in mouse models of experimental pain: role of endogenous opioids, KATP-channels and adenosine. Pharmacol. Biochem. Behav., 110:19-26. ![]() [23]Materazzi, S., Fusi, C., Benemei, S., et al., 2012. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch., 463(4):561-569. ![]() [24]McNamara, C.R., Mandel-Brehm, J., Bautista, D.M., et al., 2007. TRPA1 mediates formalin-induced pain. PNAS, 104(33):13525-13530. ![]() [25]Merrill, A.W., Cuellar, J.M., Judd, J.H., et al., 2008. Effects of TRPA1 agonists mustard oil and cinnamaldehyde on lumbar spinal wide-dynamic range neuronal responses to innocuous and noxious cutaneous stimuli in rats. J. Neurophysiol., 99(2):415-425. ![]() [26]Nieto, F.R., Cendán, C.M., Sánchez-Fernández, C., et al., 2012. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J. Pain, 13(11):1107-1121. ![]() [27]Niiyama, Y., Kawamata, T., Yamamoto, J., et al., 2009. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br. J. Anaesthesiol., 102(2):251-258. ![]() [28]Oh, G.S., Pae, H.O., Seo, W.G., et al., 2001. Capsazepine, a vanilloid receptor antagonist, inhibits the expression of inducible nitric oxide synthase gene in lipopolysaccharide-stimulated RAW264.7 macrophages through the inactivation of nuclear transcription factor-kappa B. Int. Immunopharmacol., 1(4):777-784. ![]() [29]O'Neill, J., Brock, C., Olesen, A.E., et al., 2012. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol. Rev., 64(4):939-971. ![]() [30]Pascual, D., Goicoechea, C., Burgos, E., et al., 2010. Antinociceptive effect of three common analgesic drugs on peripheral neuropathy induced by paclitaxel in rats. Pharmacol. Biochem. Behav., 95(3):331-337. ![]() [31]Pevida, M., Lastra, A., Hidalgo, A., et al., 2013. Spinal CCL2 and microglial activation are involved in paclitaxel-evoked cold hyperalgesia. Brain Res. Bull., 95:21-27. ![]() [32]Ray, A.M., Benham, C.D., Roberts, J.C., et al., 2003. Capsazepine protects against neuronal injury caused by oxygen glucose deprivation by inhibiting Ih. J. Neurosci., 23(31):10146-10153. ![]() [33]Ren, K., Dubner, R., 1999. Inflammatory models of pain and hyperalgesia. ILAR J., 40(3):111-118. ![]() [34]Rigo, F.K., Dalmolin, G.D., Trevisan, G., et al., 2013. Effect of ω-conotoxin MVIIA and Phα1β on paclitaxel-induced acute and chronic pain. Pharmacol. Biochem. Behav., 114-115:16-22. ![]() [35]Rios, E.R., Rocha, N.F., Carvalho, A.M., et al., 2013. TRP and ASIC channels mediate the antinociceptive effect of citronellyl acetate. Chem. Biol. Interact., 203(3):573-579. ![]() [36]Sałat, K., Filipek, B., Wieckowski, K., et al., 2009. Analgesic activity of 3-mono-substituted derivatives of dihydrofuran-2-one in experimental rodent models of pain. Pharmacol. Rep., 61(5):807-818. ![]() [37]Salat, K., Librowski, T., Moniczewski, A., et al., 2012a. Analgesic, antioedematous and antioxidant activity of γ-butyrolactone derivatives in rodents. Behav. Pharmacol., 23(4):407-416. ![]() [38]Salat, K., Moniczewski, A., Salat, R., et al., 2012b. Analgesic, anticonvulsant and antioxidant activities of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one dihydrochloride in mice. Pharmacol. Biochem. Behav., 101(1):138-147. ![]() [39]Sałat, K., Gawlik, K., Witalis, J., et al., 2013a. Evaluation of antinociceptive and antioxidant properties of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one in mice. Naunyn Schmiedeberg’s Arch. Pharmacol., 386(6):493-505. ![]() [40]Sałat, K., Moniczewski, A., Librowski, T., 2013b. Transient receptor potential channels—emerging novel drug targets for the treatment of pain. Curr. Med. Chem., 20(11):1409-1436. ![]() [41]Sandkühler, J., 2009. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev., 89(2):707-758. ![]() [42]Santos, A.R., Calixto, J.B., 1997. Ruthenium red and capsazepine antinociceptive effect in formalin and capsaicin models of pain in mice. Neurosci. Lett., 235(1-2):73-76. ![]() [43]Sawynok, J., Liu, X.J., 2003. The formalin test: characteristics and usefulness of the model. Rev. Analg., 7(2):145-163. ![]() [44]Walker, K.M., Urban, L., Medhurst, S.J., et al., 2003. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther., 304(1):56-62. ![]() [45]Westlund, K.N., Kochuko, M.Y., Lu, Y., et al., 2010. Impact of central and peripheral TRPV1 and ROS levels on proinflammatory mediators and nociceptive behavior. Mol. Pain, 6:46. ![]() [46]Xiao, W.H., Zheng, H., Bennett, G.J., 2012. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience, 203:194-206. ![]() [47]Zhao, M., Isami, K., Nakamura, S., et al., 2012. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol. Pain, 8:55. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>