CLC number: S816.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-05-25
Cited: 7
Clicked: 6582
Kai Lei, Ya-li Li, Yang Wang, Jing Wen, Hong-zhao Wu, Dong-you Yu, Wei-fen Li. Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1400342 @article{title="Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice", %0 Journal Article TY - JOUR
日粮中添加枯草芽孢杆菌B10对高脂日粮诱导的小鼠脂肪代谢及抗氧化的影响创新点:证明了枯草芽孢杆菌B10可以有效改善高脂日粮诱导的小鼠脂肪代谢和氧化应激,且发现此作用主要与B10调节脂肪代谢基因(PPARα、DHCR24、HMGCS2)及氧化应激基因(XO、p53)表达和谷胱甘肽过氧化物酶(GSH-Px)活力有关。 方法:将ICR雄鼠分为对照组(饲喂高脂日粮)和实验组(饲喂添加枯草芽孢杆菌菌粉的高脂日粮)。饲喂30天后,收集小鼠的血清及肝脏样品。采用试剂盒测定抗氧化及脂肪代谢相关指标和肝脏中8-羟基脱氧鸟苷(8-OHdG)含量。使用荧光定量聚合酶链式反应(PCR)测定小鼠肝脏中脂肪代谢和氧化应激相关基因的表达水平。 结论:饲喂含有枯草芽孢杆菌B10的高脂日粮能够有效降低小鼠的体重(表2),降低血清中葡萄糖和甘油三酯含量及谷草转氨酶和谷丙转氨酶活力(表3和4);下调肝脏中脂肪合成相关基因表达量,但上调脂肪分解相关基因表达量(图1),并提高肝脏中抗氧化相关基因表达量(图2)。综上所述,枯草芽孢杆菌B10能有效调节小鼠脂肪代谢,并改善其氧化应激。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]An, H.M., Park, S.Y., Lee, D.K., et al., 2011. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis., 10:116. ![]() [2]An, R., Tian, C., Shi, Q., et al., 2008. Overexpression of nm23-H1 in HeLa cells provides cells with higher resistance to oxidative stress possibly due to raising intracellular p53 and GPX1. Acta Pharmacol. Sin., 29(12):1451-1458. ![]() [3]Araya, M., Morelli, L., Reid, G., et al., 2002. Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. London Ontario, Canada. ![]() [4]Ardan, T., Kovaceva, J., Cejkova, J., 2004. Comparative histochemical and immunohistochemical study on xanthine oxidoreductase/xanthine oxidase in mammalian corneal epithelium. Acta Histochem., 106(1):69-75. ![]() [5]Charradi, K., Elkahoui, S., Limam, F., et al., 2013. High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: prevention by grape seed and skin extract. J. Physiol. Sci., 63(6):445-455. ![]() [6]Chen, W., Jiang, T., Wang, H., et al., 2012. Does Nrf2 contribute to p53-mediated control of cell survival and death? Antioxid. Redox Signal., 17(12):1670-1675. ![]() [7]de Souza-Pinto, N.C., Eide, L., Hogue, B.A., et al., 2001. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res., 61(14):5378-5381. ![]() [8]Eckel, R.H., Grundy, S.M., Zimmet, P.Z., 2005. The metabolic syndrome. Lancet, 365(9468):1415-1428. ![]() [9]Endo, H., Niioka, M., Kobayashi, N., et al., 2013. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS ONE, 8(5):e63388. ![]() [10]Everard, A., Matamoros, S., Geurts, L., et al., 2014. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio, 5(3):e01011-e01014. ![]() [11]Furukawa, S., Fujita, T., Shimabukuro, M., et al., 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 114(12):1752-1761. ![]() [12]Gao, D., Zhu, G., Gao, Z., et al., 2011. Antioxidative and hypolipidemic effects of lactic acid bacteria from pickled Chinese cabbage. J. Med. Plants Res., 5(8):1439-1446. ![]() [13]Gorinstein, S., Leontowicz, H., Leontowicz, M., et al., 2006. Raw and boiled garlic enhances plasma antioxidant activity and improves plasma lipid metabolism in cholesterol-fed rats. Life Sci., 78(6):655-663. ![]() [14]Hong, H.A., Duc, L.H., Cutting, S.M., 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev., 29(4):813-835. ![]() [15]Hu, Y., Dun, Y., Li, S., et al., 2014. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian Australas. J. Anim. Sci., 27(8):1131-1140. ![]() [16]Jeong, S.K., Nam, H.S., Rhee, J.A., et al., 2004. Metabolic syndrome and ALT: a community study in adult Koreans. Int. J. Obes., 28(8):1033-1038. ![]() [17]Kamata, H., Hirata, H., 1999. Redox regulation of cellular signalling. Cell. Signal., 11(1):1-14. ![]() [18]Kang, J.H., Yun, S.I., Park, M.H., et al., 2013. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS ONE, 8(1):e54617. ![]() [19]Li, Y.L., Lei, K., Xu, X., et al., 2013. Protective effect of Bacillus subtilis B10 against hydrogen peroxide-induced oxidative stress in a murine macrophage cell line. Int. J. Agric. Biol., 15(5):927-932. ![]() [20]Liu, D., Xu, Y., 2011. p53, oxidative stress, and aging. Antioxid. Redox Signal., 15(6):1669-1678. ![]() [21]Marczuk-Krynicka, D., Hryniewiecki, T., Paluszak, J., et al., 2009. High fat content in diets and oxidative stress in livers of non-diabetic and diabetic rats. Polish J. Environ. Stud., 18(2):249-253. ![]() [22]Matsuda, M., Shimomura, I., 2013. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract., 7(5):e330-e341. ![]() [23]Matsuzawa-Nagata, N., Takamura, T., Ando, H., et al., 2008. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism, 57(8):1071-1077. ![]() [24]Newsholme, P., Krause, M., 2014. Diet, obesity, and reactive oxygen species—implications for diabetes and aging. In: Laher, I. (Ed.), Systems Biology of Free Radicals and Antioxidants. Springer Berlin Heidelberg, p.3361-3374. ![]() [25]Nikoskelainen, S., Ouwehand, A.C., Bylund, G., et al., 2003. Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol., 15(5):443-452. ![]() [26]Novak, R., Bogovič Matijašić, B., Terčič, D., et al., 2011. Effects of two probiotic additives containing Bacillus spores on carcass characteristics, blood lipids and cecal volatile fatty acids in meat type chickens. J. Anim. Physiol. Anim. Nutr. (Berl.), 95(4):424-433. ![]() [27]Panda, A.K., Rao, S.V.R., Raju, M.V., et al., 2006. Dietary supplementation of Lactobacillus sporogenes on performance and serum biochemico—lipid profile of broiler chickens. J. Poult. Sci., 43(3):235-240. ![]() [28]Park, D.Y., Ahn, Y.T., Park, S.H., et al., 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS ONE, 8(3):e59470. ![]() [29]Rafter, J., 2002. Lactic acid bacteria and cancer. Br. J. Nutr., 88(S1):S89-S94. ![]() [30]Rizvi, F., Iftikhar, M., George, J.P., 2003. Beneficial effects of fish liver preparations of sea bass (Lates calcarifer) versus gemfibrozil in high fat diet-induced lipid-intolerant rats. J. Med. Food, 6(2):123-128. ![]() [31]Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., et al., 2005. The antioxidant function of the p53 tumor suppressor. Nat. Med., 11(12):1306-1313. ![]() [32]Sies, H., 1997. Oxidative stress: oxidants and antioxidants. Exp. Physiol., 82(2):291-295. ![]() [33]Tsai, Y.T., Cheng, P.C., Pan, T.M., 2014. Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Appl. Microbiol. Biotechnol., 98(1):1-10. ![]() [34]Valko, M., Rhodes, C.J., Moncol, J., et al., 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 160(1):1-40. ![]() [35]Wang, J., Tang, H., Zhang, C., et al., 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J., 9:1-15. ![]() [36]Westerbacka, J., Corner, A., Tiikkainen, M., et al., 2004. Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia, 47(8):1360-1369. ![]() [37]Wu, R.M., Sun, Y.Y., Zhou, T.T., et al., 2014. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol. Sin., 35(10):1274-1284. ![]() [38]Xin, J., Zeng, D., Wang, H., et al., 2014. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl. Microbiol. Biotechnol., 98(15):6817-6829. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>