CLC number: Q25
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-01-13
Cited: 5
Clicked: 5918
Xu-feng Fu, Kun Yao, Xing Du, Yan Li, Xiu-yu Yang, Min Yu, Mei-zhang Li, Qing-hua Cui. PGC-1α regulates the cell cycle through ATP and ROS in CH1 cells[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1500158 @article{title="PGC-1α regulates the cell cycle through ATP and ROS in CH1 cells", %0 Journal Article TY - JOUR
PGC-1α在CH1细胞中通过ATP和ROS调控细胞周期创新点:构建了稳定表达PGC-1α的CH1细胞株,并系统地研究了PGC-1α调控细胞周期是通过ATP和ROS调节CyclinD1和CyclinB1的行使功能。 方法:以慢病毒质粒pBABE为载体构建了PGC-1α稳定表达的CH1 PGC-1α细胞株(PGC-1α),同时转染空质粒pBABE作为对照(PB),结合RNA干扰CH1 PGC-1α中PGC-1α的过表达(Si),测定了ATP和ROS水平。用流式细胞术检测了细胞周期和免疫印迹检测了CyclinB1/D1的表达,并进一步分别用寡霉素抑制PGC-1α细胞中的ATP生成,用H2O2处理细胞以增加外源ROS水平。然后检测ATP和ROS改变后,对CyclinB1/D1表达及细胞周期的影响,以明确ATP和ROS是否参与PGC-1α对细胞周期的调控作用。 结论:本实验成功构建了稳定表达PGC-1α的细胞株(图1和图2a),与PB对照和RNA干扰PGC-1α比较,过表达PGC-1α具有升高ATP、降低ROS和促进细胞周期的作用(图3和图4)。进一步用寡霉素抑制ATP合成后发现CyclinD1明显下调(图5),而加入H2O2增加外源ROS后发现CyclinB1显著上调(图6)。通过本实验我们提出PGC-1α调控细胞周期是通过升高ATP水平抑制CyclinD1表达和降低ROS水平促进CyclinB1表达来实现。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Acín-Pérez, P.R., Fernández, S.P., Peleato, M.L., et al., 2008. Respiratory active mitochondrial supercomplexes. Mol. Cell, 32(4):529-539. ![]() [2]Althoff, T., Mills, D.J., Popot, J.L., et al., 2011. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J., 30(22):4652-4664. ![]() [3]Bertoli, C., Skotheim, J.M., Bruin, R.A., 2013. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol., 14(8):518-528. ![]() [4]Cannon, B., Houstek, J., Nedergaard, J., 1998. Brown adipose tissue: more than an effector of thermogenesis Ann. NY Acad. Sci., 856:171-187. ![]() [5]Chaturvedi, R.K., Beal, M.F., 2013. Mitochondrial diseases of the brain. Free Radical Biol. Med., 63:1-29. ![]() [6]Chen, G., Dai, J., Tan, S., et al., 2014. MTERF1 regulates the oxidative phosphorylation activity and cell proliferation in HeLa cells. Acta Biochim. Biophys. Sin., 46(6):512-521. ![]() [7]Chen, Q., Yin, G., Stewart, S., et al., 2010. Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia. Biochem. Biophys. Res. Commun., 397(4):656-660. ![]() [8]Dalton, S., 2013. G1 compartmentalization and cell fate coordination. Cell, 155(1):13-14. ![]() [9]Falk, M.J., Shen, L., Gonzalez, M., et al., 2015. Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol. Genet. Metab., 114(3):388-396. ![]() [10]Hahm, E.R., Sakao, K., Singh, S.V., 2014. Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells. Prostate, 74(12):1209-1221. ![]() [11]Lehman, J.J., Barger, P.M., Kovacs, A., et al., 2000. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest., 106(7):847-856. ![]() [12]Lin, J., Handschin, C., Spiegelman, B.M., 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab., 1(6):361-370. ![]() [13]Löbrich, M., Jeggo, P.A., 2007. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat. Rev. Cancer, 7(11):861-869. ![]() [14]Luckhart, S., Giulivi, C., Drexler, A.L., et al., 2013. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS Pathog., 9(2):e1003180. ![]() [15]Malumbres, M., Barbacid, M., 2009. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 9(3):153-166. ![]() [16]Marinho, H.S., Real, C., Cyrne, L., et al., 2014. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2:535-562. ![]() [17]McBride, H.M., Neuspiel, M., Wasiak, S., 2006. Mitochondria: more than just a powerhouse. Curr. Biol., 16(14):R551-R560. ![]() [18]Meirhaeghe, A., Crowley, V., Lenaghan, C., et al., 2003. Characterization of the human, mouse and rat PGC1β (peroxisome-proliferator-activated receptor-γ co-activator 1β) gene in vitro and in vivo. Biochem. J., 373(Pt 1):155-165. ![]() [19]Miraglia, F., Betti, L., Palego, L., et al., 2015. Parkinson’s disease and α-synucleinopathies: from arising pathways to therapeutic challenge. Cent. Nerv. Syst. Agents Med. Chem., 15(2):109-116. ![]() [20]Pieczenik, S.R., Neustadt, J., 2007. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol., 83(1):84-92. ![]() [21]Rice, A.C., Ladd, A.C., Bennett, J.P., 2015. Postmortem Alzheimer’s disease hippocampi show oxidative phosphorylation gene expression opposite that of isolated pyramidal neurons. J. Alzheimer’s Dis., 45(4):1051-1059. ![]() [22]Rohas, L.M., St-Pierre, J., Uldry, M., et al., 2007. A fundamental system of cellular energy homeostasis regulated by PGC-1α. PNAS, 104(19):7933-7938. ![]() [23]Schick, V., Majores, M., Fassunke, J., et al., 2007. Mutational and expression analysis of CDK1, cyclinA2 and cyclinB1 in epilepsy-associated glioneuronal lesions. Neuropathol. Appl. Neurobiol., 33(2):152-162. ![]() [24]Shiota, T., Traven, A., Lithgow, T., 2015. Mitochondrial biogenesis: cell-cycle-dependent investment in making mitochondria. Curr. Biol., 25(2):R78-R80. ![]() [25]Valero, T., 2014. Mitochondrial biogenesis: pharmacological approaches. Curr. Pharm. Des., 20(35):5507-5509. ![]() [26]Vartak, R., Porras, C.A., Bai, Y., 2013. Respiratory supercomplexes: structure, function and assembly. Protein Cell, 4(8):582-590. ![]() [27]Vega, R.B., Huss, J.M., Kelly, D.P., 2000. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol., 20(5):1868-1876. ![]() [28]Wallace, D.C., 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet., 39(1):359-407. ![]() [29]Weinberg, F., Chandel, N.S., 2009. Mitochondrial metabolism and cancer. Ann. NY Acad. Sci., 1177(1):66-73. ![]() [30]Won, J.C., Park, J.Y., Kim, Y.M., et al., 2010. Peroxisome proliferator-activated receptor-γ coactivator 1-α overexpression prevents endothelial apoptosis by increasing ATP/ADP translocase activity. Arterioscler. Thromb. Vasc. Biol., 30(2):290-297. ![]() [31]Wood, Z.A., Poole, L.B., Karplus, P.A., 2003. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science, 300(5619):650-653. ![]() [32]Wu, Z., Puigserver, P., Andersson, U., et al., 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1):115-124. ![]() [33]Xiong, W., Jiao, Y., Huang, W., et al., 2012. Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells. Acta Biochim. Bioph. Sin., 44(4):347-358. ![]() [34]Xu, H., Lyu, S., Xu, J., et al., 2015. Effect of lipopolysaccharide on the hemocyte apoptosis of Eriocheir sinensis. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(12):971-979. ![]() [35]Zhang, Y., Ba, Y., Liu, C., et al., 2007. PGC-1α induces apoptosis in human epithelial ovarian cancer cells through a PPARγ-dependent pathway. Cell Res., 17(4):363-373. ![]() [36]List of electronic supplementary materials ![]() [37]Fig. S1 Immunofluorescence picture of CyclinD1 and CyclinB1 in PB, PGC-1α, and Si cells ![]() [38]Fig. S2 Mitochondrial content indicated by MitoTracker Green fluorescence (analyzed by flow cytometry) ![]() [39]Fig. S3 Change of CyclinD1/B1 levels in CH1-PGC-1α after 24 h of antimycin A treatment ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>