CLC number: Q946.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-01-13
Cited: 0
Clicked: 5476
Hai-ping Lu, Wei-qin Pang, Wen-xu Li, Yuan-yuan Tan, Qing Wang, Hai-Jun Zhao, Qing-Yao Shu. Tissue-specific expression, developmentally and spatially regulated alternative splicing, and protein subcellular localization of OsLpa rice[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1500205 @article{title="Tissue-specific expression, developmentally and spatially regulated alternative splicing, and protein subcellular localization of OsLpa rice", %0 Journal Article TY - JOUR
水稻低植酸基因OsLpa1可变剪接和表达的时空特征及编码蛋白的亚细胞定位创新点:确定了OsLpa1存在的三种剪切方式,明确了三种转录本在不同组织和发育时期丰度的变化;揭示了OsLpa1表达的组织和时空差异,确定其在根、种子糊粉层细胞和花丝中高度表达;明确了三种转录本编码的蛋白均定位于亚叶绿体。 方法:通过培育OsLpa1启动子与β-葡萄糖醛酸糖苷酶(GUS)杂合基因的转基因植株,通过不同组织的GUS组织化学染色确定OsLpa1表达的组织特异性;通过设计特异性引物确定OsLpa1存在的转录方式,采用实时荧光定量聚合酶链式反应(PCR)分析三种转录本在不同组织和发育时期的丰度;采用OsLpa1三种转录本与绿色荧光蛋白(GFP)基因构建杂合基因并在水稻原生质体中的瞬时表达,在共聚焦显微镜下观察蛋白的亚细胞定位。 结论:OsLpa1在根、茎、叶和花丝有强烈的表达。它存在三种可变剪切方式,产生的三种转录本存在明显的时空和组织差异,但其编码的蛋白均定位于叶绿体。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Aravind, L., Wolf, Y.I., Koonin, E.V., 2000. The ATP-CONE: an evolutionarily mobile, ATP-binding regulatory domain. J. Mol. Microbiol. Biotechnol., 2(2):191-194. ![]() [2]di Paolo, G., de Camilli, P., 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112):651-657. ![]() [3]E, Z.G., Wang, L., Zhu, J.H., 2013. Splicing and alternative splicing in rice and humans. BMB Rep., 46(9):439-447. ![]() [4]Filichkin, S.A., Priest, H.D., Givan, S.A., et al., 2010. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res., 20(1):45-58. ![]() [5]Guo, L.L., Yu, Y.H., Xia, X.L., et al., 2010. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol., 10(1):18. ![]() [6]Hiei, Y., Komari, T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc., 3(5):824-834. ![]() [7]Janetopoulos, C., Devreotes, P., 2006. Phosphoinositide signaling plays a key role in cytokinesis. J. Cell Biol., 174(4):485-490. ![]() [8]Kim, S.I., Andaya, C.B., Goyal, S.S., et al., 2008a. The rice Oslpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor. Appl. Genet., 117(5):769-779. ![]() [9]Kim, S.I., Andaya, C.B., Newman, J.W., et al., 2008b. Isolation and characterization of a low phytic acid rice mutant reveal a mutation in the rice orthologue of maize MIK. Theor. Appl. Genet., 117(8):1291-1301. ![]() [10]Lee, H.S., Lee, D.H., Cho, H.K., et al., 2015. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. Plant Cell, 27(2):417-431. ![]() [11]Lu, H.P., Edwards, M., Wang, Q.Z., et al., 2015. Expression of cytochrome P450 CYP81A6 in rice: tissue specificity, protein subcellular localization, and response to herbicide application. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(2):113-122. ![]() [12]Marquez, Y., Brown, J.W.S., Simpson, C., et al., 2012. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res., 22(6):1184-1195. ![]() [13]Monserrate, J.P., York, J.D., 2010. Inositol phosphate synthesis and the nuclear processes they affect. Curr. Opin. Cell Biol., 22(3):365-373. ![]() [14]Otegui, M.S., Capp, R., Staehelin, L.A., 2002. Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell, 14(6):1311-1327. ![]() [15]Raboy, V., 2001. Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trend Plant Sci., 6(10):458-462. ![]() [16]Raboy, V., 2003. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry, 64(6):1033-1043. ![]() [17]Raboy, V., 2007. Forward genetics studies of seed phytic acid. Israel J. Plant Sci., 55(2):171-181. ![]() [18]Raboy, V., 2009. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci., 177(4):281-296. ![]() [19]Reddy, A.S.N., Roger, M.F., Richardson, D.N., et al., 2012. Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. Front. Plant Sci., 3:18. ![]() [20]Reddy, A.S.N., Marquez, Y., Kalyna, M., et al., 2013. Complexity of the alternative splicing landscape in plants. Plant Cell, 25(10):3657-3683. ![]() [21]Rogers, M.F., Thomas, J., Reddy, A.S.N., et al., 2012. SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol., 13(1):R4. ![]() [22]Sato, Y., Antonio, B., Namiki, N., et al., 2011. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. BMC Plant Biol., 11(1):10. ![]() [23]Sieburth, L.E., Meyerowitz, E.M., 1997. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell, 9(3):355-365. ![]() [24]Staiger, D., Brown, J.W.S., 2013. Alternative splicing at the intersection of biological timing, development and stress response. Plant Cell, 25(10):3640-3656. ![]() [25]Stevenson-Paulik, J., Bastidas, R.J., Chiou, S.T., et al., 2005. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. PNAS, 102(35):12612-12617. ![]() [26]Suhandono, S., Apriyanto, A., Ihsani, N., 2014. Isolation and characterization of three cassava elongation factor 1α (MeEF) promoters. PLoS ONE, 9(1):e84692. ![]() [27]Thole, J.M., Nielsen, E., 2008. Phosphoinositides in plants: novel functions in membrane trafficking. Curr. Opin. Plant Biol., 11(6):620-631. ![]() [28]Thole, J.M., Vermeer, J.E.M., Zhang, Y.L., et al., 2008. ROOT HAIR DEFECTIVE4 encodes a phosphatidylionositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell, 20(2):381-395. ![]() [29]Wang, L., Cao, C.L., Ma, Q.B., et al., 2014. RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol., 14:169. ![]() [30]Xu, X.H., Zhao, H.J., Liu, Q.L., et al., 2009. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor. Appl. Genet., 119(1):75-83. ![]() [31]York, J.D., 2006. Regulation of nuclear processes by inositol polyphosphates. Biochim. Biophys. Acta, 1761(5-6):552-559. ![]() [32]Zhang, G.J., Guo, G.W., Hu, X.D., et al., 2010. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res., 20(5):646-654. ![]() [33]Zhang, Y., Su, J.B., Duan, S., et al., 2011. A high efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related process. Plant Methods, 7(1):30. ![]() [34]Zhao, H.J., Liu, Q.L., Ren, X.L., et al., 2008. Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol. Breeding, 22(4):603-612. ![]() [35]Zhao, H.J., Cui, H.R., Xu, X.H., et al., 2013. Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon. Theor. Appl. Genet., 126(12):3009-3020. ![]() [36]Zhao, Y., Yan, A., Feijo, J., et al., 2010. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell, 22(12):4031-4044. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>