
CLC number: S436.418
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-03-15
Cited: 0
Clicked: 5294
Heng Jiang, Liang Zhang, Jing-ze Zhang, Mohammad Reza Ojaghian, Kevin D. Hyde. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1500243 @article{title="Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro", %0 Journal Article TY - JOUR
体外棘孢木霉与辣椒疫霉菌的拮抗互作创新点:首次在超微结构水平上报道棘孢木霉菌菌丝能重寄生于辣椒疫霉菌的卵孢子,为木霉生防菌的应用提供了科学理论依据。 方法:从土壤中分离木霉菌株,采用对峙培养法筛选木霉生防菌株。通过形态学和多基因序列(ITS、tef1和rpb2)进行鉴定,明确获得木霉菌株的种类。通过细胞学和超微结构观察,研究木霉生防菌对辣椒疫霉菌菌丝和卵孢子的拮抗机制。 结论:本研究筛选出了对辣椒疫霉菌菌丝具有高效拮抗作用的一个木霉菌株(CGMCC 6422),被鉴定为棘孢木霉菌(Trichoderma asperellum)。细胞学和超微结构显示,该菌株能塌陷辣椒疫霉菌的菌落,通过缠绕和穿透辣椒疫霉菌的菌丝体,引起菌丝体解体;首次观察到该菌株能侵染辣椒疫霉菌的卵孢子,并引起卵孢子完全降解。综上所述,筛选出的木霉生防菌株CGMCC 6422具有应用于防治辣椒疫病的生防潜力。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bell, D.K., Wells, H.D., Markham, C.R., 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72(4):379-382. ![]() [2]Benhamou, N., Chet, I., 1996. Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction. Biochem. Cell Biol., 86:405-415. ![]() [3]Benítez, T., Rincón, A.M., Limón, M.C., et al., 2004. Biocontrol mechanisms of Trichoderma strains. Intern. Microbiol., 7:249-260. ![]() [4]Boccas, B.R., 1981. Interspecific crosses between closely related heterothallic Phytophthora species. Phytopathology, 71(1):60-65. ![]() [5]Carbone, I., Kohn, L.M., 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3):553-556. ![]() [6]Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B., et al., 2014. The sooty moulds. Fungal Divers., 66(1):1-36. ![]() [7]Do, K.S., Kang, W.S., Park, E.W., 2012. A forecast model for the first occurrence of Phytophthora blight on chili pepper after overwintering. Plant Pathol. J., 28(2):172-184. ![]() [8]Druzhinina, I.S., Kopchinskiy, A.G., Komoń, M., et al., 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol., 42(10):813-828. ![]() [9]Elad, Y., 1988. Ultrastructural scanning electron microscopy study of parasitism of Botrytis cinerea on flowers and fruit of cucumber. Trans. Br. Mycol. Soc., 97(1):185-190. ![]() [10]Erwin, D.C., Ribeiro, O.K., 1996. Phytophthora Diseases Worldwide. American Phytopathological Society Press, St. Paul, MN, p.42-95, 262-268. ![]() [11]Etxeberria, A., Mendarte, S., Larregla, S., 2011. Determination of viability of Phytophthora capsici oospores with the tetrazolium bromide staining test versus a plasmolysis method. Rev. Iberoam. Micol., 28(1):43-49. ![]() [12]Ezziyyani, M., Requena, M.E., Egea-Gilabert, C., et al., 2007. Biological control of Phytophthora root rot of pepperchili using Trichoderma harzianum and Streptomyces rochei in combination. J. Phytopathol., 155(6):342-349. ![]() [13]Fry, W.E., Goodwin, S.B., 1997. Resurgence of the Irish potato famine fungus. Bioscience, 47(6):363-371. ![]() [14]Gupta, V.P., Tewari, S.K., Govindaiah, 1999. Ultrastructure of mycoparasitism of Trichoderma, Gliocladium and Laetisaria species on Botryodiplodia theobromae. J. Phytopathol., 147(1):19-24. ![]() [15]Harman, G.E., 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2):190-194. ![]() [16]Hemmes, D.E., Bartnicki-Garcia, S., 1975. Electron microscopy of gametangial interaction and oospore development in Phytophthora capsici. Arch. Microbiol., 103(1):91-112. ![]() [17]Hord, M.J., Ristaino, J.B., 1991. Effects of physical and chemical factors on the germination of oospores of Phytophthora capsici in vitro. Phytopathology, 81(12):1541-1546. ![]() [18]Jaklitsch , W.M., 2009. European species of Hypocrea. Part I. The green-spored species. Stud. Mycol., 63:1-91. ![]() [19]Jaklitsch, W.M., 2011. European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers, 48(1):1-250. ![]() [20]Kaewchai, S., Soytong, K., Hyde, K.D., 2009. Mycofungicides and fungal biofertilizers. Fungal Divers, 38:25-50. ![]() [21]Kexiang, G., Xiaoguang, L., Yonghong, L., et al., 2002. Potential of Trichoderma harzianum and T. atroviride to control Botryosphaeria berengeriana f. sp. piricola, the cause of apple ring rot. J. Phytopathol., 150(4-5):271-276. ![]() [22]Kopchinskiy, A., Komon, M., Kubice, C.P., et al., 2005. TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol. Res., 109(06):658-660. ![]() [23]Kuhajek, J.M., Jeffers, S.N., Slattery, M., et al., 2003. A rapid microbioassay for discovery of novel fungicides for Phytophthora spp. Phytopathology, 93(1):46-53. ![]() [24]Kullnig-Gradinger, C.M., Szakacs, G., Kubicek, C.P., 2002. Phylogeny and evolution of the fungal genus Trichoderma: a multigene approach. Mycol. Res., 106(7):757-767. ![]() [25]Lamour, K.H., Hausbeck, M.K., 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology, 90(4):396-400. ![]() [26]Liu, L.N., Zhang, J.Z., Xu, T., 2009. Histopathological studies of sclerotia of Rhizoctonia solani parasitized by the EGFP transformant of Trichoderma virens. Lett. Appl. Microbiol., 49(6):745-750. ![]() [27]Liu, Y.J., Whelen, S., Hall, B.D., 1999. Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol., 16(12):1799-1808. ![]() [28]McDonald, B.A., Linde, C., 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol., 40(1):349-379. ![]() [29]Osorio-Hernandez, E., Hernandez-Castillo, F.D., Gallegos-Morales, G., et al., 2011. In-vitro behavior of Trichoderma spp. against Phytophthora capsici Leonian. Afr. J. Agric. Res., 6(19):4594-4600. ![]() [30]Papavizas, G.C., Bowers, J.H., Johnston, S.A., 1981. Selective isolation of Phytophthora capsici from soils. Phytopathology, 71(2):129-133. ![]() [31]Parra, G.P., Ristaino, J.B., 1998. Insensitivity to Ridomil Gold (mefenoxam) found among field isolates of Phytophthora capsici causing Phytophthora blight on bell pepperchilis in North Carolina and New Jersey. Plant Dis., 82(6):711. ![]() [32]Pennisi, A.M., Agosteo, G.E., Cacciola, S.O., et al., 1998. Insensitivity to metalaxyl among field isolates of Phytophthora capsici causing root and crown rot of pepperchili in southern Italy. Plant Dis., 82(11):1283. ![]() [33]Qi, R.D., Wang, T., Li, P., et al., 2012. Distribution of mating types of Phytophthora capsici and inheritance in asexual progenies in Anhui Province. Acta Phytopathol. Sin., 42(1):45-50 (in Chinese). ![]() [34]Reino, J.L., Guerrero, R.F., Hernández-Galán, R., et al., 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev., 7(1):89-123. ![]() [35]Ribeiro, O.K., Erwin, D.C., Zentmyer, G.A., 1975. An improved synthetic medium for oospore production and germination of several Phytophthora species. Mycologia, 67(5):1012-1019. ![]() [36]Satour, M.M., Butler, E.E., 1968. Comparative morphological and physiological studies of the progenies from intraspecific matings of Phytophthora capsici. Phytopathology, 58:183-192. ![]() [37]Sid Ahmed, A., Perez-Sanchez, C., Egea, C., et al., 1999. Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepperchili plants. Plant Pathol., 48(1):58-65. ![]() [38]Sid Ahmed, A., Ezziyyani, M., Sánchez, C.P., et al., 2003. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper chili (Capsicum annuum) plants. Eur. J. Plant Pathol., 109(6):633-637. ![]() [39]Thompson, J.D., Gibson, T.J., Plewniak, F., et al., 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res., 25(24):4876-4882. ![]() [40]White, T.J., Bruns, T., Lee, S., et al., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., et al. (Eds.), PCR Protocols: a Guide to Methods and Applications. Academic Press, New York, USA, p.315-322. ![]() [41]Zhang, J.Z., Li, M.J., 2009. A new species of Bipolaris from the halophyte Sesuvium portulacastrum in Guangdong Province, China. Mycotaxon, 109(1):289-300. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>