CLC number: R392.11
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-04-19
Cited: 0
Clicked: 5864
Heng Li, Xiao-fei Shen, Xin-e Zhou, Yan-e Shi, Lu-xia Deng, Yi Ma, Xiao-ying Wang, Jing-yu Li, Ning Huang. Antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 on the Gram-negative bacteria Escherichia coli[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1600139 @article{title="Antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 on the Gram-negative bacteria Escherichia coli", %0 Journal Article TY - JOUR
高迁移率族蛋白N2(HMGN2)对革兰氏阴性大肠埃希菌的抗菌机制研究创新点:从分子水平上探讨了HMGN2对大肠埃希菌的抗菌机制。 方法:用反相高效液相色谱法从人类子宫纤维囊腺瘤中提取组织细胞的HMGN2分子(tHMGN2)。诱导重组表达质粒PET-32a-c(+)-HMGN2表达重组蛋白HMGN2(rHMGN2)。用琼脂糖凝胶弥散法对HMGN2的抗菌活性进行检测,并用微量肉汤稀释法测定HMGN2的最小抑菌浓度(MIC)。通过膜通透性实验和凝胶阻滞实验检测HMGN2 对细菌菌膜和核酸的作用。通过结晶紫实验和电镜扫描验证HMGN2的抗生物被膜形成作用。通过氮蓝四唑(NBT)法和Transwell趋化法分别验证HMGN2的活化效应和对中性粒细胞的趋化活性。 结果:我们分离纯化获得了高质量的天然和重组HMGN2分子,同时验证了HMGN2对革兰氏阴性大肠埃希菌具有较强的抗菌活性,MIC为16.25 µg/ml。细菌膜通透性实验发现HMGN2使大肠埃希菌膜渗透性明显增大。HMGN2分子与大肠埃希菌K12染色体DNA和质粒DNA的结合均呈浓度依赖效应。银染和扫描电镜结果显示,HMGN2与大肠埃希菌共培养可干扰细菌生物被膜形成,并破坏已形成的早期和成熟生物被膜。然而HMGN2对中性粒细胞没有活化作用和趋化作用。 结论:作为抗菌肽,HMGN2对大肠埃希菌有良好的抗菌活性。该活性可能通过影响细胞膜的通透性和干扰细菌DNA转录以及干扰生物被膜而发挥作用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bolintineanu, D., Hazrati, E., Davis, H.T., et al., 2010. Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides, 31(1):1-8. ![]() [2]Bratton, D.L., Henson, P.M., 2011. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol., 32(8):350-357. ![]() [3]Brogden, K.A., 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 3(3):238-250. ![]() [4]Cao, Y., Wu, G., Fan, B., et al., 2011. High mobility group nucleosomal binding domain 2 protein protects bladder epithelial cells from Klebsiella pneumoniae invasion. Biol. Pharm. bull., 34(7):1065-1071. ![]() [5]Chen, H., Wang, B., Gao, D., et al., 2013. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small, 9(16):2735-2746. ![]() [6]Costerton, J.W., Stewart, P.S., Greenberg, E., 1999. Bacterial biofilms: a common cause of persistent infections. Science, 284(5418):1318-1322. ![]() [7]Degryse, B., Resnati, M., Rabbani, S.A., et al., 1999. Src-dependence and pertussis-toxin sensitivity of urokinase receptor-dependent chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. Blood, 94(2): 649-662. ![]() [8]Deng, L.X., Wu, G.X., Cao, Y., et al., 2011. The chromosomal protein HMGN2 mediates lipopolysaccharide-induced expression of β-defensins in A549 cells. FEBS J., 278(12): 2152-2166. ![]() [9]Deng, L.X., Wu, G.X., Cao, Y., et al., 2012. The chromosomal protein HMGN2 mediates the LPS-induced expression of β-defensins in mice. Inflammation, 35(2):456-473. ![]() [10]Feng, Y., Huang, N., Wu, Q., et al., 2005. HMGN2: a novel antimicrobial effector molecule of human mononuclear leukocytes? J. Leukoc. Biol., 78(5):1136-1141. ![]() [11]Feng, Y., He, F., Zhang, P., et al., 2009. Inhibitory effect of HMGN2 protein on human hepatitis B virus expression and replication in the HepG2.2.15 cell line. Antivir. Res., 81(3):277-282. ![]() [12]Furusawa, T., Cherukuri, S., 2010. Developmental function of HMGN proteins. BBA-Gene Regul. Mech., 1799(1):69-73. ![]() [13]Hawkey, P.M., Jones, A.M., 2009. The changing epidemiology of resistance. J. Antimicorob. Chemoth., 64(Suppl. 1): i3-i10. ![]() [14]Høiby, N., Bjarnsholt, T., Givskov, M., et al., 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Ag., 35(4):322-332. ![]() [15]Lai, Y., Gallo, R.L., 2009. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 30(3):131-141. ![]() [16]Lehrer, R.I., Rosenman, M., Harwig, S.S., et al., 1991. Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods, 137(2):167-173. ![]() [17]Liu, Y., Knapp, K.M., Yang, L., et al., 2013. High in vitro antimicrobial activity of β-peptoid-peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis. Int. J. Antimicrob. Ag., 41(1):20-27. ![]() [18]Mitra, A., Palaniyandi, S., Herren, C.D., et al., 2013. Pleiotropic roles of uvrY on biofilm formation, motility and virulence in uropathogenic Escherichia coli CFT073. PLoS ONE, 8(2):e55492. ![]() [19]O'Toole, G., Kaplan, H.B., Kolter, R., 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol., 54(1): 49-79. ![]() [20]Park, B., Fikrig, S., Smithwick, E., 1968. Infection and nitroblue-tetrazolium reduction by neutrophils: a diagnostic aid. Lancet Oncol., 292(7567):532-534. ![]() [21]Park, C.B., Kim, H.S., Kim, S.C., 1998. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Bioph. Res. Commun., 244(1):253-257. ![]() [22]Reddy, K., Yedery, R., Aranha, C., 2004. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Ag., 24(6):536-547. ![]() [23]Reeves, R., 2010. Nuclear functions of the HMG proteins. BBA-Gene Regul. Mech., 1799(1):3-14. ![]() [24]Rovere-Querini, P., Capobianco, A., Scaffidi, P., et al., 2004. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep., 5(8):825-830. ![]() [25]Sarda-Mantel, L., Saleh-Mghir, A., Welling, M., et al., 2007. Evaluation of 99mTc-UBI 29-41 scintigraphy for specific detection of experimental Staphylococcus aureus prosthetic joint infections. Eur. J. Nucl. Med. Mol. Imaging, 34(8): 1302-1309. ![]() [26]Steinstraesser, L., Kraneburg, U., Jacobsen, F., et al., 2011. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 216(3):322-333. ![]() [27]Stewart, P.S., Costerton, J.W., 2001. Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276):135-138. ![]() [28]Tunc, O., Thompson, J., Tremellen, K., 2010. Development of the NBT assay as a marker of sperm oxidative stress. Int. J. Androl., 33(1):13-21. ![]() [29]Wang, K., Yan, J., Dang, W., et al., 2014. Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: membrane integrity disruption and inhibition of biofilm formation. Peptides, 56:22-29. ![]() [30]Wang, L., Rao, C., Gao, K., et al., 2013. Development of a reference standard of Escherichia coli DNA for residual DNA determination in China. PLoS ONE, 8(9):e74166. ![]() [31]Wiegand, I., Hilpert, K., Hancock, R.E., 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 3(2):163-175. ![]() [32]Wu, G., Cao, Y., Fan, B., et al., 2011. High-mobility group protein N2 (HMGN2) inhibited the internalization of Klebsiella pneumoniae into cultured bladder epithelial cells. Acta Bioch. Bioph. Sin., 43(9):680-687. ![]() [33]Xie, Y., Fleming, E., Chen, J.L., et al., 2011. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides, 32(4):677-682. ![]() [34]Yang, D., Postnikov, Y.V., Li, Y., et al., 2012. High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J. Exp. Med., 209(1):157-171. ![]() [35]Zanetti, M., 2004. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukocyte Biol., 75(1):39-48. ![]() [36]Zhang, L., Wang, Y.W., Lu, Z.Q., 2015. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(10):875-882. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>