CLC number: R447
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-04-19
Cited: 0
Clicked: 6208
Shao-rui Hao, Shi-chao Geng, Lin-xiao Fan, Jia-jia Chen, Qin Zhang, Lan-juan Li. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1600273 @article{title="Intelligent diagnosis of jaundice with dynamic uncertain causality graph model", %0 Journal Article TY - JOUR
基于动态不确定性因果图(DUCG)模型的黄疸待查智能诊断研究创新点:本研究采用了国际先进的动态不确定性因果图(DUCG)模型,建立了黄疸待查相关疾病的知识库,通过203例临床病例的测试,其准确率达99.01%。文章以图形化的方式给出了疾病的诊断过程,方便医师理解和学习。 方法:本研究采用了DUCG模型进行疾病诊断,首先根据DUCG模型的定义和黄疸诊断思路建立了包含27种黄疸相关疾病(表4)的知识库(图2),其中包括了疾病的危险因素、临床症状和体征、客观检查检验结果等。然后与根据DUCG算法(公式1-4)编写的推理软件相结合形成诊断系统,对203例临床黄疸患者进行智能诊断,准确率达99.01%。最后对一例丙型病毒性肝炎患者的具体诊断过程进行了拆解阐述,体现了DUCG模型适用于复杂逻辑关系、计算效率高、不依赖推理概率和结果易于理解等优点。 结论:DUCG模型成功实现了对黄疸待查相关疾病的智能诊断,准确率高,实用性好。该方法具有在其他医学领域推广应用的价值。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Avci, E., 2012. A new expert system for diagnosis of lung cancer: GDA-LS_SVM. J. Med. Syst., 36(3):2005-2009. ![]() [2]Bhat, S., Acharya, U.R., Adeli, H., et al., 2014. Automated diagnosis of autism: in search of a mathematical marker. Rev. Neurosci., 25(6):851-861. ![]() [3]Bhutani, V.K., Johnson-Hamerman, L., 2015. The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin. Fetal Neonatal Med., 20(1):6-13. ![]() [4]Dong, C., Wang, Y., Zhang, Q., et al., 2014a. The methodology of dynamic uncertain causality graph for intelligent diagnosis of vertigo. Comput. Methods Prog. Biomed., 113(1):162-174. ![]() [5]Dong, C., Zhang, Q., Geng, S., 2014b. A modeling and probabilistic reasoning method of dynamic uncertain causality graph for industrial fault diagnosis. Int. J. Automat. Comput., 11(3):288-298. ![]() [6]Gottesman, L.E., del Vecchio, M.T., Aronoff, S.C., 2015. Etiologies of conjugated hyperbilirubinemia in infancy: a systematic review of 1692 subjects. BMC Pediatrics, 15(1):8. ![]() [7]Hatzilygeroudis, I., Prentzas, J., 2004. Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems. Expert Syst. Appl., 27(1): 63-75. ![]() [8]Keith, R.D., Beckley, S., Garibaldi, J.M., et al., 1995. A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. Br. J. Obstet. Gynaecol., 102(9): 688-700. ![]() [9]Kruk, M., Osowski, S., Markiewicz, T., et al., 2014. Computer approach to recognition of Fuhrman grade of cells in clear-cell renal cell carcinoma. Anal. Quant Cytopathol. Histpathol., 36(3):147-160. ![]() [10]Lee, G.H., 2008. Rule-based and case-based reasoning approach for internal audit of bank. Knowl.-Based Syst., 21(2):140-147. ![]() [11]Li, P., Bi, T., Huang, J., et al., 2014. Breast cancer early diagnosis based on hybrid strategy. Biomed. Mater. Eng., 24(6):3397-3404. ![]() [12]Madabhushi, A., Doyle, S., Lee, G., et al., 2010. Integrated diagnostics: a conceptual framework with examples. Clin. Chem. Lab. Med., 48(7):989-998. ![]() [13]Malek, S., Phillips, R., Mohsen, A., et al., 2005. Computer assisted orthopaedic surgical system for insertion of distal locking screws in intra-medullary nails: a valid and reliable navigation system. Int. J. Med. Robot. Comput. Assist. Surg., 1(4):34-44. ![]() [14]Oladipupo, O.O., Uwadia, C.O., Ayo, C.K., 2012. Improving medical rule-based expert systems comprehensibility: fuzzy association rule mining approach. Int. J. Artif. Intell. Soft Comput., 3(1):29-38. ![]() [15]Pearl, J., 2009. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. ![]() [16]Poole, D., Zhang, N.L., 2003. Exploiting contextual independence in probabilistic inference. J. Artif. Intell. Res., 18:263-313. ![]() [17]Sasikumar, M., Ramani, S., Raman, S.M., et al., 2007. A practical introduction to rule based expert systems. Narosa Publishing House, New Delhi. ![]() [18]Shen, Y., Colloc, J., Jacquet-Andrieu, A., et al., 2015. Emerging medical informatics with case-based reasoning for aiding clinical decision in multi-agent system. J. Biomed. Inform., 56:307-317. ![]() [19]Siniscalchi, S.M., Svendsen, T., Lee, C., 2014. An artificial neural network approach to automatic speech processing. Neurocomputing, 140:326-338. ![]() [20]Suk, H.I., Lee, S.W., Shen, D., 2014. Subclass-based multi-task learning for Alzheimer’s disease diagnosis. Front. Aging Neurosci., 6:168. ![]() [21]Xu, B.G., 2012. Intelligent fault inference for rotating flexible rotors using bayesian belief network. Expert Syst. Appl., 39(1):816-822. ![]() [22]Zhang, Q., 2012. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases. J. Comput. Sci. Technol., 27(1):1-23. ![]() [23]Zhang, Q., 2015a. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning: directed cyclic graph and joint probability distribution. IEEE Trans. Neural Netw. Learn. Syst., 26(7):1503-1517. ![]() [24]Zhang, Q., 2015b. Dynamic uncertain causality graph for knowledge representation and reasoning: continuous variable, uncertain evidence, and failure forecast. IEEE Trans. Syst. Man Cybern. Syst., 45(7):990-1003. ![]() [25]Zhang, Q., Geng, S., 2015. Dynamic uncertain causality graph applied to dynamic fault diagnoses of large and complex systems. IEEE Trans. Reliab., 64(3):910-927. ![]() [26]Zhang, Q., Dong, C., Cui, Y., et al., 2014. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning: statistics base, matrix, and application. IEEE Trans. Neural Netw. Learn. Syst., 25(4): 645-663. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>