CLC number: TS252.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-09-16
Cited: 0
Clicked: 7305
Zhan-mei Jiang, Li-na Bai, Nan Yang, Zhi-biao Feng, Bo Tian. Stability of β-carotene microcapsules with Maillard reaction products derived from whey protein isolate and galactose as coating materials[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1700082 @article{title="Stability of β-carotene microcapsules with Maillard reaction products derived from whey protein isolate and galactose as coating materials", %0 Journal Article TY - JOUR
研究以乳清蛋白美拉德反应产物为壁材的β-胡萝卜素微胶囊稳定性创新点:首次证实乳清蛋白与半乳糖美拉德反应产物(WPI-半乳糖MRPs)有助于提高β-胡萝卜素微胶囊的贮存稳定性。 方法:利用扫描电镜观察β-胡萝卜素微胶囊形态特征;用激光粒度分析微胶囊颗粒的大小;以微胶囊的保留率为检测指标,研究温度、pH、空气、白炽光照及其紫外光照对微胶囊贮存稳定性的影响。 结论:以WPI-半乳糖MRPs为壁材的β-胡萝卜素微胶囊表面光滑完整,没有裂缝和孔隙,有少量典型的凹陷;以WPI-半乳糖MRPs为壁材的微胶囊粒径比以WPI-半乳糖混合物为壁材的微胶囊粒径小;从温度、pH、空气、白炽光照及紫外光照五个方面进行研究发现,以WPI-半乳糖MRPs为壁材的β-胡萝卜素微胶囊贮存稳定性显著优于以WPI半乳糖的混合物为壁材的β-胡萝卜素微胶囊贮存稳定性;WPI-半乳糖MRPs有助于提高β-胡萝卜素微胶囊的稳定性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Akhtar, M., Dickinson, E., 2003. Emulsifying properties of whey protein-dextran conjugates at low pH and different salt concentrations. Coll. Surf. B, 31(1-4):125-132. ![]() [2]Al-Hakkak, J., Al-Hakkak, F., 2010. Functional egg white-pectin conjugates prepared by controlled Maillard reaction. J. Food Eng., 100(1):152-159. ![]() [3]Augustin, M.A., Sanguansri, L., Bode, O., 2006. Maillard reaction products as encapsulants for fish oil powders. J. Food Sci., 71(2):E25-E32. ![]() [4]Boon, C.S., Xu, Z., Yue, X., et al., 2008. Factors affecting lycopene oxidation in oil-in-water emulsions. J. Agric. Food Chem., 56(4):1408-1414. ![]() [5]Boon, C.S., McClements, D.J., Weiss, J., et al., 2009. Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions. J. Agric. Food. Chem., 57(7):2993-2998. ![]() [6]Brands, C.M.J., van Boekel, M., 2003. Kinetic modelling of reactions in heated disaccharide-casein systems. Food Chem., 83(1):13-26. ![]() [7]Chen, B.C., McClements, D.J., Decker, E.A., 2010. Role of continuous phase anionic polysaccharides on the oxidative stability of menhaden oil-in-water emulsions. J. Agric. Food. Chem., 58(6):3779-3784. ![]() [8]Desobry, S.A., Netto, F.M., Labuza, T.P., 1997. Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J. Food Sci., 62(6):1158-1162. ![]() [9]Donhowe, E.G., Flores, F.P., Kerr, W.L., et al., 2014. Characterization and in vitro bioavailability of β-carotene: effects of microencapsulation method and food matrix. LWT-Food Sci. Technol., 57(1):42-48. ![]() [10]Drusch, S., Berg, S., Scampicchio, M., et al., 2009. Role of glycated caseinate in stabilisation of microencapsulated lipophilic functional ingredients. Food Hydrocoll., 23(3):942-948. ![]() [11]Faraji, H., McClements, D.J., Decker, E.A., 2004. Role of continuous phase protein on the oxidative stability of fish oil-in-water emulsions. J. Agric. Food Chem., 52(14):4558-4564. ![]() [12]Gardner, C.M., Burke, N.A.D., Stover, H.D.H., 2010. Cross-linked microcapsules formed from self-deactivating reactive polyelectrolytes. Langmuir, 26(7):4916-4924. ![]() [13]Gu, F.L., Kim, J.M., Hayat, K., et al., 2009. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein-glucose model system. Food Chem., 117(1):48-54. ![]() [14]Klinkesorn, U., Sophanodora, P., Chinachoti, P., et al., 2005. Increasing the oxidative stability of liquid and dried tuna oil-in-water emulsions with electrostatic layer-by-layer deposition technology. J. Agric. Food Chem., 53(11):4561-4566. ![]() [15]Loksuwan, J., 2007. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll., 21(5-6):928-935. ![]() [16]Masek, A., Chrzescijanska, E., Diakowska, K., et al., 2015. Application of β-carotene, a natural flavonoid dye, to polymeric materials as a natural antioxidant and determination of its characteristics using cyclic voltammetry and FTIR spectroscopy. Int. J. Electrochem. Sci., 10(4):3372-3386. ![]() [17]O'Regan, J., Mulvihill, D.M., 2010. Heat stability and freeze-thaw stability of oil-in-water emulsions stabilised by sodium caseinate-maltodextrin conjugates. Food Chem., 119(1):182-190. ![]() [18]Oliver, C.M., Augustin, M.A., Sanguansri, L., 2009. Maillard-based casein-carbohydrate microcapsules for the delivery of fish oil: emulsion stability during in vitro digestion. Aust. J. Dairy Technol., 64(1):80-83. ![]() [19]Ribeiro, H.S., Cruz, R.C.D., 2005. Biliquid foams containing carotenoids. Eng. Life Sci., 5(1):84-88. ![]() [20]Rosenberg, M., Young, S.L., 1993. Whey proteins as microencapsulating of agents. Microencapsulation of anhydrous milk fat structure evaluation. Food Struct., 12:31-41. ![]() [21]Tan, L.H., Chan, L.W., Heng, P.W., 2005. Effect of oil loading on microspheres produced by spray drying. J. Microencapsul., 22:253-259. ![]() [22]Villiere, A., Viau, M., Bronnec, I., et al., 2005. Oxidative stability of bovine serum albumin sodium caseinate-stabilized emulsions depends on metal availability. J. Agric. Food Chem., 53(5):1514-1520. ![]() [23]Wang, Y.Y., Liu, F.G., Liang, C.X., et al., 2014. Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on ε-polylysine and chitosan. J. Sci. Food Agric., 94(14):2986-2991. ![]() [24]Waraho, T., McClements, D.J., Decker, E.A., 2011. Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Technol., 22(1):3-13. ![]() [25]Wong, B.T., Day, L., Augustin, M.A., 2011. Deamidated wheat protein-dextran Maillard conjugates: effect of size and location of polysaccharide conjugated on steric stabilization of emulsions at acidic pH. Food Hydrocoll., 25(6):1424-1432. ![]() [26]Xu, D.X., Wang, X.Y., Jiang, J.P., et al., 2012. Impact of whey protein beet pectin conjugation on the physicochemical stability of β-carotene emulsions. Food Hydrocoll., 28(2):258-266. ![]() [27]Xu, D.X., Wang, X.Y., Jiang, J.P., et al., 2013. Influence of pH, EDTA, α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-stabilized oil-in-water emulsions. LWT-Food Sci. Technol., 54(1):236-241. ![]() [28]Zhu, H., Lu, L., Liu, X., et al., 2015. Treatment of diabetes with encapsulated pig islets: an update on current developments. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(5):329-343. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>