CLC number: R592
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-03-11
Cited: 0
Clicked: 5049
Jia Xu, Jiu-Kun Jiang, Xiao-Lin Li, Xiao-Peng Yu, Ying-Ge Xu, Yuan-Qiang Lu. Comparative transcriptomic analysis of vascular endothelial cells after hypoxia/re-oxygenation induction based on microarray technology[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2000043 @article{title="Comparative transcriptomic analysis of vascular endothelial cells after hypoxia/re-oxygenation induction based on microarray technology", %0 Journal Article TY - JOUR
基于微阵列技术的缺氧/复氧诱导下血管内皮细胞转录组分析创新点:血管内皮细胞(VEC)缺氧/复氧损伤被视定为许多生理和病理过程中导致器官功能障碍的重要驱动因素.然而,其详细病理生理机制和基因表达谱信息尚未阐明.本研究首次应用全转录组芯片技术研究VEC缺氧/复氧诱导下的转录组轮廓. 方法:采用缺氧孵育3 h后复氧1 h的HUVEC为缺氧/复氧组,同时常氧孵育的HUVEC为常氧对照组.应用含58 339条探针的全转录组芯片检测每组三个样本.对差异表达基因进行生信分析和功能验证. 结论:本研究发现372个有意义的差异表达基因探针.相关基因涵盖多种途径和功能,例如氧自由基的产生、钙超载、炎症、糖脂代谢、内皮细胞增殖、分化、细胞骨架及通透性调节、细胞裂解、凋亡和血管生成.另外,实验进一步表明,差异表达基因pleckstrin同源样域家族A成员1(PHLDA1)的mRNA和蛋白质表达结果与微阵列结果一致.STRING分析发现,PHLDA1可能与差异表达基因SLC38A3、SLC5A5、Lnc-SLC36A4-1和Lnc-PLEKHJ1-1具有物理性和/或功能性相互作用,这有望揭示VEC在缺氧/复氧环境下长链非编码RNA(lncRNA)的相关机制. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Atkeson A, Yeh SY, Malhotra A, et al., 2009. Endothelial function in obstructive sleep apnea. Prog Cardiovasc Dis, 51(5):351-362. ![]() [2]Bader AM, Klose K, Bieback K, et al., 2015. Hypoxic preconditioning increases survival and pro-angiogenic capacity of human cord blood mesenchymal stromal cells in vitro. PLoS ONE, 10(9):e0138477. ![]() [3]Baldea I, Teacoe I, Olteanu DE, et al., 2018. Effects of different hypoxia degrees on endothelial cell cultures—time course study. Mech Ageing Dev, 172:45-50. ![]() [4]Basile DP, Friedrich JL, Spahic J, et al., 2011. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol, 300(3):F721-F733. ![]() [5]Carden DL, Granger DN, 2000. Pathophysiology of ischaemia-reperfusion injury. J Pathol, 190(3):255-266. ![]() [6]E S, Costa MC, Kurc S, et al., 2018. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin, 39(7):1085-1099. ![]() [7]Eltzschig HK, Collard CD, 2004. Vascular ischaemia and reperfusion injury. Br Med Bull, 70(1):71-86. ![]() [8]Fearon AE, Carter EP, Clayton NS, et al., 2018. PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Rep, 22(9):2469-2481. ![]() [9]Ferrucci M, Biagioni F, Ryskalin L, et al., 2018. Ambiguous effects of autophagy activation following hypoperfusion/ ischemia. Int J Mol Sci, 19(9):2756. ![]() [10]Filippi I, Saltarella I, Aldinucci C, et al., 2018. Different adaptive responses to hypoxia in normal and multiple myeloma endothelial cells. Cell Physiol Biochem, 46(1):203-212. ![]() [11]Fu PF, Zheng X, Fan X, et al., 2019. Role of cytoplasmic lncRNAs in regulating cancer signaling pathways. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(1):1-8. ![]() [12]Gudenas BL, Wang J, Kuang SZ, et al., 2019. Genomic data mining for functional annotation of human long noncoding RNAs. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(6):476-487. ![]() [13]Guo YX, Jia PY, Chen YQ, et al., 2020. PHLDA1 is a new therapeutic target of oxidative stress and ischemia reperfusion-induced myocardial injury. Life Sci, 245:117347. ![]() [14]Haybar H, Shokuhian M, Bagheri M, et al., 2019. Involvement of circulating inflammatory factors in prognosis and risk of cardiovascular disease. J Mol Cell Cardiol, 132:110-119. ![]() [15]Jiang JK, Fang W, Hong LJ, et al., 2017. Distribution and differentiation of myeloid-derived suppressor cells after fluid resuscitation in mice with hemorrhagic shock. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(1):48-58. ![]() [16]Johnson EO, Chang KH, de Pablo Y, et al., 2011. PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer. J Cell Sci, 124(16):2711-2722. ![]() [17]Li F, Lee KE, Simon MC, 2018. Detection of hypoxia and HIF in paraffin-embedded tumor tissues. In: Huang LE (Ed.), Hypoxia: Methods and Protocols. Humana Press, New York, p.277-282. ![]() [18]Li WY, Zhao YL, Fu P, 2018. Hypoxia induced factor in chronic kidney disease: friend or foe? Front Med (Lausanne), 4:259. ![]() [19]Liao JK, Zulueta JJ, Yu FS, et al., 1995. Regulation of bovine endothelial constitutive nitric oxide synthase by oxygen. J Clin Invest, 96(6):2661-2666. ![]() [20]Lim To WK, Kumar P, Marshall JM, 2015. Hypoxia is an effective stimulus for vesicular release of ATP from human umbilical vein endothelial cells. Placenta, 36(7):759-766. ![]() [21]Mansoori Z, Ghaedi H, Sadatamini M, et al., 2018. Downregulation of long non-coding RNAs LINC00523 and LINC00994 in type 2 diabetes in an Iranian cohort. Mol Biol Rep, 45(5):1227-1233. ![]() [22]McQuillan LP, Leung GK, Marsden PA, et al., 1994. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am J Physiol, 267(5):H1921-H1927. ![]() [23]Mineo M, Ricklefs F, Rooj AK, et al., 2016. The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep, 15(11):2500-2509. ![]() [24]Moad AIH, Muhammad TST, Oon CE, et al., 2013. Rapamycin induces apoptosis when autophagy is inhibited in T-47D mammary cells and both processes are regulated by Phlda1. Cell Biochem Biophys, 66(3):567-587. ![]() [25]Nagai MA, 2016. Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and cancer (Review). Biomed Rep, 4(3):275-281. ![]() [26]Nallamshetty S, Chan SY, Loscalzo J, 2013. Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med, 64:20-30. ![]() [27]Niu QF, Li DL, Yang Y, et al., 2019. Establishment of human vascular endothelial hypoxia/reoxygeneration injury cell model. China J Oral Maxillofac Surg, 17(4):295-299 (in Chinese). ![]() [28]https://doi.org/10.19438/j.cjoms.2019.04.002 ![]() [29]Pan H, Wang BH, Li ZB, et al., 2019. Mitochondrial superoxide anions induced by exogenous oxidative stress determine tumor cell fate: an individual cell-based study. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(4):310-321. ![]() [30]Pan J, Zhu JY, Kee HS, et al., 2015. A review of compression, ventilation, defibrillation, drug treatment, and targeted temperature management in cardiopulmonary resuscitation. Chin Med J (Engl), 128(4):550-554. ![]() [31]Salvadori M, Rosso G, Bertoni E, 2015. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J Transplant, 5(2):52-67. ![]() [32]Sellheyer K, Nelson P, 2011. Follicular stem cell marker PHLDA1 (TDAG51) is superior to cytokeratin-20 in differentiating between trichoepithelioma and basal cell carcinoma in small biopsy specimens. J Cutan Pathol, 38(7):542-550. ![]() [33]Shay JES, Celeste Simon M, 2012. Hypoxia-inducible factors: crosstalk between inflammation and metabolism. Semin Cell Dev Biol, 23(4):389-394. ![]() [34]Sun Y, George J, Rocha S, 2015. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE, 10(4):e0123649. ![]() [35]Tang X, Lin CP, Guo DQ, et al., 2016. CLOCK promotes endothelial damage by inducing autophagy through reactive oxygen species. Oxid Med Cell Longev, 2016:9591482. ![]() [36]Taylor MA, Das BC, Ray SK, 2018. Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma. Apoptosis, 23(11-12):563-575. ![]() [37]Urbanek T, Kuczmik W, Basta-Kaim A, et al., 2014. Rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation. Brain Res, 1553:1-11. ![]() [38]Wang JC, Li XX, Sun X, et al., 2018. Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF-1α-induced pro-angiogenic factor. Cancer Sci, 109(5):1627-1637. ![]() [39]Wu JB, Lei Z, Yu JG, 2015. Hypoxia induces autophagy in human vascular endothelial cells in a hypoxia-inducible factor 1-dependent manner. Mol Med Rep, 11(4):2677-2682. ![]() [40]Xie XJ, Yang YM, Jiang JK, et al., 2017. Association between the vascular endothelial growth factor single nucleotide polymorphisms and diabetic retinopathy risk: a meta-analysis. J Diabetes, 9(8):738-753. ![]() [41]Zampetaki A, Albrecht A, Steinhofel K, 2018. Long non-coding RNA structure and function: is there a link? Front Physiol, 9:1201. ![]() [42]Zhang Q, Fang W, Ma L, et al., 2018. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes: a cohort study. Medicine (Baltimore), 97(14):e0415. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>