CLC number: S91
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-09-07
Cited: 0
Clicked: 4141
Citations: Bibtex RefMan EndNote GB/T7714
Abu Seman Juneta-Nor, Noordiyana Mat Noordin, Mohamad Nor Azra, Hong-yu Ma, Norainy Mohd Husin, Mhd Ikhwanuddin. Amino acid compounds released by the giant freshwater prawn Macrobrachium rosenbergii during ecdysis: a factor attracting cannibalistic behaviour?[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2000126 @article{title="Amino acid compounds released by the giant freshwater prawn Macrobrachium rosenbergii during ecdysis: a factor attracting cannibalistic behaviour?", %0 Journal Article TY - JOUR
罗氏沼虾蜕皮过程中释放的氨基酸组分是引发同类残杀的因素?创新点:了解罗氏沼虾蜕皮过程中生化组分的变化对于理解同类残杀的重要意义.目前,还没有关于同类残杀和蜕皮过程与生化组分之间关系的研究报道.本研究以此为切入点,采用统计学方法探究二者之间的关联,并鉴定其中差异的氨基酸成分. 方法:在人工饲养条件下,测定了蜕皮阶段和非蜕皮阶段的罗氏沼虾肌肉、外骨骼和养殖水体中的总氨基酸及自由氨基酸组分,采用双因素方差分析法比较分析了两个阶段氨基酸组分的差异,同时鉴定了差异的氨基酸成分. 结论:在蜕皮阶段,组织中的总氨基酸以脯氨酸和肌氨酸的含量最高,而水体中的自由氨基酸含量以色氨酸和脯氨酸为主.研究结果表明,这些氨基酸组分在罗氏沼虾蜕皮过程中释放了促进同类残杀的化学信号. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abe H, Okuma E, Amano H, et al., 1999. Effects of seawater acclimation on the levels of free ![]() [2]Augusto A, Greene LJ, Laure HJ, et al., 2007a. Adaptive shifts in osmoregulatory strategy and the invasion of freshwater by brachyuran crabs: evidence from Dilocarcinus pagei (Trichodactylidae). J Exp Zool Part A: Ecol Genet Physiol, 307A(12):688-698. ![]() [3]Augusto A, Greene LJ, Laure HJ, et al., 2007b. The ontogeny of isosmotic intracellular regulation in the diadromous, freshwater palaemonid shrimps, Macrobrachium amazonicum and M. olfersi (Decapoda). J Crustacean Biol, 27(4):626-634. ![]() [4]Augusto A, Pinheiro AS, Greene LJ, et al., 2009. Evolutionary transition to freshwater by ancestral marine palaemonids: evidence from osmoregulation in a tide pool shrimp. Aquat Biol, 7(1-2):113-122. ![]() [5]Azra MN, Chen JC, Hsu TH, et al., 2019. Growth, molting duration and carapace hardness of blue swimming crab, Portunus pelagicus, instars at different water temperatures. Aquacult Rep, 15:100226. ![]() [6]Barki A, Jones C, Karplus I, 2011. Chemical communication and aquaculture of decapod crustaceans: needs, problems, and possible solutions. In: Breithaupt T, Thiel M (Eds.), Chemical Communication in Crustaceans. Springer, New York, p.485-506. ![]() [7]Bhavan PS, Radhakrishnan S, Seenivasan C, et al., 2010. Proximate composition and profiles of amino acids and fatty acids in the muscle of adult males and females of commercially viable prawn species Macrobrachium rosenbergii collected from natural culture environments. Int J Biol, 2(2):107-119. ![]() [8]Brodsky VY, Malchenko LA, Butorina NN, et al., 2017. Glutamic acid as enhancer of protein synthesis kinetics in hepatocytes from old rats. Biochemistry (Moscow), 82(8):957-961. ![]() [9]Caprio J, Derby CD, 2010. Aquatic animal models in the study of chemoreception. Senses: A Compr Ref, 4:97-134. ![]() [10]Carter CG, Mente E, 2014. Protein synthesis in crustaceans: a review focused on feeding and nutrition. Central Eur J Biol, 9(1):1-10. ![]() [11]Chang ES, Bruce MJ, Tamone SL, 1993. Regulation of crustacean molting: a multi-hormonal system. Am Zoologist, 33(3):324-329. ![]() [12]Cuzon G, Cahu C, Aldrin JF, et al., 1980. Starvation effect on metabolism of Penaeus japonicus. Proc World Mariculture Soc, 11(1-4):410-423. ![]() [13]de Faria SC, Augusto AS, McNamara JC, 2011. Intra- and extracellular osmotic regulation in the hololimnetic Caridea and Anomura: a phylogenetic perspective on the conquest of fresh water by the decapod Crustacea. J Comp Physiol B, 181(2):175-186. ![]() [14]Derby CD, Sorensen PW, 2008. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol, 34(7):898-914. ![]() [15]Fujimori T, Abe H, 2002. Physiological roles of free ![]() [16]Gäde G, Marco HG, 2006. Structure, function and mode of action of select arthropod neuropeptides. Stud Nat Prod Chem, 33:69-139. ![]() [17]Hay ME, 2011. Crustaceans as powerful models in aquatic chemical ecology. In: Breithaupt T, Thiel M (Eds.), Chemical Communication in Crustaceans. Springer, New York, p.41-62. ![]() [18]Henderson JW, Ricker RD, Bidlingmeyer BA, et al., 2000. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids: amino acid analysis using Zorbax Eclipse-AAA columns and the Agilent 1100 HPLC. Agilent Technologies, USA. https://www.agilent.com/cs/ library/chromatograms/59801193.pdf [Accessed on Jun. 18, 2019]. ![]() [19]Höglund E, Bakke MJ, Øverli O, et al., 2005. Suppression of aggressive behaviour in juvenile Atlantic cod (Gadus morhua) by ![]() [20]Hseu JR, Lu FI, Su HM, et al., 2003. Effect of exogenous tryptophan on cannibalism, survival and growth in juvenile grouper, Epinephelus coioides. Aquaculture, 218(1-4):251-263. ![]() [21]Justo CC, Aida K, Hanyu I, 1991. Effects of photoperiod and temperature on molting, reproduction and growth of the freshwater prawn Macrobrachium rosenbergii. Nippon Suisan Gakk, 57(2):209-217. ![]() [22]Kamaruding NA, Ismail N, Ikhwanuddin M, 2017. Characterization of molting stages in the giant freshwater prawn, Macrobrachium rosenbergii using setagenesis of pleopod. Songklanakarin J Sci Technol, 40(2):397-401. ![]() [23]https://doi.org/10.14456/sjst-psu.2018.35 ![]() [24]Kato H, Rhue MR, Nishimura T, 1989. Role of free amino acids and peptides in food taste. In: Teranishi R, Buttery RG, Shahidi F (Eds.), Flavor Chemistry. Trends and Developments. American Chemical Society, Washington, p.158-174. ![]() [25]Keenan CP, Blackshaw A, 1999. Mud crab aquaculture and biology: Proceedings of an International Scientific Forum held in Darwin. Australian Centre for International Agricultural Research, Canberra, Australia. ![]() [26]Lachaise F, le Roux A, Hubert M, et al., 1993. The molting gland of crustaceans: localization, activity, and endocrine control (a review). J Crustacean Biol, 13(2):198-234. ![]() [27]Laranja JLQ Jr, Quinitio ET, Catacutan MR, et al., 2010. Effects of dietary ![]() [28]Liu TY, Boykins RA, 1989. Hydrolysis of proteins and peptides in a hermetically sealed microcapillary tube: high recovery of labile amino acids. Anal Biochem, 182(2):383-387. ![]() [29]Luvizotto-santos R, Lee JT, Branco ZP, et al., 2003. Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata dana, 1851 (crustacea-grapsidae). J Exp Zool Part A: Compar Exp Biol, 295A(2):200-205. ![]() [30]Marshall S, Warburton K, Paterson B, et al., 2005. Cannibalism in juvenile blue-swimmer crabs Portunus pelagicus (Linnaeus, 1766):effects of body size, moult stage and refuge availability. Appl Anim Behav Sci, 90(1):65-82. ![]() [31]McCallum ML, Weston SD, Tilahun Y, 2018. Angular substrate preference and molting behavior of the Giant River Prawn, Macrobrachium rosenbergii and its implications for cannibalism management. BioRxiv, preprint. ![]() [32]McNamara JC, Rosa JC, Greene LJ, et al., 2004. Free amino acid pools as effectors of osmostic adjustment in different tissues of the freshwater shrimp Macrobrachium olfersii (Crustacea, Decapoda) during long-term salinity acclimation. Mar Freshw Behav Physiol, 37(3):193-208. ![]() [33]Mente E, Coutteau P, Houlihan DF, et al., 2002. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source. J Exp Biol, 205(20):3107-3122. ![]() [34]Nair KKC, Bransilav M, Rosenthal H, et al., 1999. Experimental studies on the cannibalistic habit of Macrobrachium rosenbergii (de Man). The Fourth Indian Fisheries Forum Proceeding, 24:227-232. ![]() [35]Okuma E, Abe H, 1994. Simultaneous determination of ![]() [36]Peebles B, 1978. Molting and mortality in Macrobrachium rosenbergii. J World Aquacult Soc, 9(1-4):39-46. ![]() [37]Romano N, Zeng CS, 2017. Cannibalism of decapod crustaceans and implications for their aquaculture: a review of its prevalence, influencing factors, and mitigating methods. Rev Fish Sci Aquacult, 25(1):42-69. ![]() [38]Schmidt M, Mellon D Jr, 2010. Neuronal processing of chemical information in crustaceans. In: Breithaupt T, Thiel M (Eds.), Chemical Communication in Crustaceans. Springer, New York, p.123-147. ![]() [39]Sefiani M, le Caer JP, Soyez D, 1996. Characterization of hyperglycemic and molt-inhibiting activity from sinus glands of the penaeid shrimp Penaeus vannamei. Gen Comp Endocrinol, 103(1):41-53. ![]() [40]Shinji J, Okutsu T, Jayasankar V, et al., 2012. Metabolism of amino acids during hyposmotic adaptation in the whiteleg shrimp, Litopenaeus vannamei. Amino acids, 43(5):1945-1954. ![]() [41]Skinner DM, 1985. Interacting factors in the control of the crustacean molt cycle. Am Zoologist, 25(1):275-284. ![]() [42]Wang L, Xu RJ, Hu B, et al., 2010. Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chem, 123(4):1259-1266. ![]() [43]Waterman TH, 1960. The Physiology of Crustacea. Academic Press, New York, p.670-681. ![]() [44]Webster SG, Keller R, 1986. Purification, characterisation and amino acid composition of the putative moult-inhibiting hormone (MIH) of Carcinus maenas (Crustacea, Decapoda). J Comp Physiol B, 156(5):617-624. ![]() [45]Wu GY, Wu ZL, Dai ZL, et al., 2013. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids, 44(4):1107-1113. ![]() [46]Wu GY, Bazer FW, Dai ZL, et al., 2014. Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci, 2:387-417. ![]() [47]Yano H, Aso K, Tsugita A, 1990. Further study on gas phase acid hydrolysis of protein: improvement of recoveries for tryptophan, tyrosine, and methionine. J Biochem, 108(4):579-582. ![]() [48]Yasuda A, Yasuda Y, Fujita T, et al., 1994. Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii): multiplicity of molecular forms by stereoinversion and diverse functions. Gen Comp Endocrinol, 95(3):387-398. ![]() [49]Zarubin TP, Chang ES, Mykles DL, 2009. Expression of recombinant eyestalk crustacean hyperglycemic hormone from the tropical land crab, Gecarcinus lateralis, that inhibits Y-organ ecdysteroidogenesis in vitro. Mol Biol Rep, 36(6):1231. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>