CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5952
Wenwen ZHONG, Dejuan WANG, Bing YAO, Xiaoxia CHEN, Zhongyang WANG, Hu QU, Bo MA, Lei YE, Jianguang QIU. Integrative analysis of prognostic long non-coding RNAs with copy number variation in bladder cancer[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2000494 @article{title="Integrative analysis of prognostic long non-coding RNAs with copy number variation in bladder cancer", %0 Journal Article TY - JOUR
长非编码RNA和拷贝数变异关联分析鉴定和验证膀胱癌lncRNA预后标志物创新点:鉴定与膀胱癌生存预后密切相关的伴有CNV的lncRNAs,构建风险评分模型。 方法:对The Cancer Genome Atlas(TCGA)数据库中408例膀胱癌患者的mRNA、DNA甲基化和DNA拷贝数数据进行综合生物信息学分析,筛选获得不同的亚型、差异表达lncRNAs和编码基因,采用加权基因共表达网络分析(weighted gene co-expression network analysis(WGCNA))方法鉴定共表达基因和lncRNA模块。使用Kaplan-Meier生存曲线评估CNV相关的lncRNAs对膀胱癌预后的影响,并用GSE31684数据集进行验证。 结论:多组学整合分析显示与CNV相关的NR2F1-AS1、LINC01138、THUMPD3-AS1、LOC101928489、TMEM147-AS1是膀胱癌中的预后因子,并利用这些lncRNAs构建与膀胱癌的总生存预后有关的风险评估模型,且在GSE31684数据集中得到验证。这些lncRNAs可作为膀胱癌的预后生物标志物。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AngCE, MaQ, WapinskiOL, et al., 2019. The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. Elife, 8:e41770. ![]() [2]BeroukhimR, MermelCH, PorterD, et al., 2010. The landscape of somatic copy-number alteration across human cancers. Nature, 463(7283):899-905. ![]() [3]BlancheP, DartiguesJF, Jacqmin-GaddaH, 2013. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med, 32(30):5381-5397. ![]() [4]BrayF, FerlayJ, SoerjomataramI, et al., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6):394-424. ![]() [5]ChappellG, SilvaGO, UeharaT, et al., 2016. Characterization of copy number alterations in a mouse model of fibrosis‐associated hepatocellular carcinoma reveals concordance with human disease. Cancer Med, 5(3):574-585. ![]() [6]ChenG, WangZY, WangDQ, et al., 2013. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res, 41(D1):D983-D986. ![]() [7]ChenXJ, ChangCW, SpoerkeJM, et al., 2019. Low-pass whole-genome sequencing of circulating cell-free DNA demonstrates dynamic changes in genomic copy number in a squamous lung cancer clinical cohort. Clin Cancer Res, 25(7):2254-2263. ![]() [8]ChenYA, LemireM, ChoufaniS, et al., 2013. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics, 8(2):203-209. ![]() [9]ChengLJ, PandyaPH, LiuEZ, et al., 2019. Integration of genomic copy number variations and chemotherapy-response biomarkers in pediatric sarcoma. BMC Med Genomics, 12(S1):23. ![]() [10]CibulskisK, LawrenceMS, CarterSL, et al., 2013. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol, 31(3):213-219. ![]() [11]DuZ, FeiT, VerhaakRGW, et al., 2013. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol, 20(7):908-913. ![]() [12]EggersS, DeBoerKD, van den BergenJ, et al., 2015. Copy number variation associated with meiotic arrest in idiopathic male infertility. Fertil Steril, 103(1):214-219. ![]() [13]ErriquezJ, BeccoP, OliveroM, et al., 2015. TOP2A gene copy gain predicts response of epithelial ovarian cancers to pegylated liposomal doxorubicin: TOP2A as marker of response to PLD in ovarian cancer. Gynecol Oncol, 138(3):627-633. ![]() [14]FeukL, CarsonAR, SchererSW, 2006. Structural variation in the human genome. Nat Rev Genet, 7(2):85-97. ![]() [15]GudenasBL, WangJ, KuangSZ, et al., 2019. Genomic data mining for functional annotation of human long noncoding RNAs. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(6):476-487. ![]() [16]GuoF, FuQF, WangY, et al., 2019. Long non-coding RNA NR2F1-AS1 promoted proliferation and migration yet suppressed apoptosis of thyroid cancer cells through regulating miRNA-338-3p/CCND1 axis. J Cell Mol Med, 23(9):5907-5919. ![]() [17]HänzelmannS, CasteloR, GuinneyJ, 2013. GSVA: gene set variation analysis for microarray and RNA‐Seq data. BMC Bioinformatics, 14:7. ![]() [18]HayashiT, GustKM, WyattAW, et al., 2016. Not all NOTCH is created equal: the oncogenic role of NOTCH2 in bladder cancer and its implications for targeted therapy. Clin Cancer Res, 22(12):2981-2992. ![]() [19]HenrichsenCN, ChaignatE, ReymondA, 2009. Copy number variants, diseases and gene expression. Hum Mol Genet, 18(R1):R1-R8. ![]() [20]HuJ, ChenY, LiX, et al., 2019. THUMPD3-AS1 is correlated with non-small cell lung cancer and regulates self-renewal through miR-543 and ONECUT2. OncoTargets Ther, 12:9849-9860. ![]() [21]HuLW, WuYY, TanDL, et al., 2015. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res, 34(1):7. ![]() [22]HuXW, FengY, ZhangDM, et al., 2014. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 26(3):344-357. ![]() [23]HuY, WangJL, QianJ, et al., 2014. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res, 74(23):6890-6902. ![]() [24]HuangH, ChenJ, DingCM, et al., 2018. LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J Cell Mol Med, 22(6):3238-3245. ![]() [25]HussainSA, JamesND, 2003. The systemic treatment of advanced and metastatic bladder cancer. Lancet Oncol, 4(8):489-497. ![]() [26]KimJS, ChaeY, HaYS, et al., 2012. Ras association domain family 1A: a promising prognostic marker in recurrent nonmuscle invasive bladder cancer. Clin Genitourin Cancer, 10(2):114-120. ![]() [27]LangfelderP, HorvathS, 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9:559. ![]() [28]LedetEM, HuXF, SartorO, et al., 2013. Characterization of germline copy number variation in high-risk African American families with prostate cancer. Prostate, 73(6):614-623. ![]() [29]LiSL, ZhengK, PeiY, et al., 2019. Long noncoding RNA NR2F1-AS1 enhances the malignant properties of osteosarcoma by increasing forkhead box A1 expression via sponging of microRNA-483-3p. Aging, 11(23):11609-11623. ![]() [30]LiZ, ZhangJW, LiuXY, et al., 2018. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat Commun, 9:1572. ![]() [31]LiuD, XuXY, WenJM, et al., 2018. Integrated genome-wide analysis of gene expression and DNA copy number variations highlights stem cell-related pathways in small cell esophageal carcinoma. Stem Cells Int, 2018:3481783. ![]() [32]MalhotraD, SebatJ, 2012. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell, 148(6):1223-1241. ![]() [33]Martin-DoyleW, LeowJJ, OrsolaA, et al., 2015. Improving selection criteria for early cystectomy in high-grade T1 bladder cancer: a meta-analysis of 15 215 patients. J Clin Oncol, 33(6):643-650. ![]() [34]Martínez-FernándezM, FeberA, DueñasM, et al., 2015. Analysis of the polycomb-related lncRNAs HOTAIR and ANRIL in bladder cancer. Clin Epigenetics, 7:109. ![]() [35]McCarrollSA, HuettA, KuballaP, et al., 2008. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet, 40(9):1107-1112. ![]() [36]MengQT, WangKL, BrunettiT, et al., 2018. The DGCR5 long noncoding RNA may regulate expression of several schizophrenia-related genes. Sci Transl Med, 10(472):eaat6912. ![]() [37]MermelCH, SchumacherSE, HillB, et al., 2011. GISTIC 2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol, 12(4):R41. ![]() [38]MitraAP, CoteRJ, 2009. Molecular pathogenesis and diagnostics of bladder cancer. Annu Rev Pathol Mech Dis, 4:251-285. ![]() [39]MoranVA, PereraRJ, KhalilAM, 2012. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res, 40(14):6391-6400. ![]() [40]NakamuraY, 2009. DNA variations in human and medical genetics: 25 years of my experience. J Hum Genet, 54(1):1-8. ![]() [41]NingSW, ZhangJZ, WangP, et al., 2016. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res, 44(D1):D980-D985. ![]() [42]NørskovMS, Frikke-SchmidtR, BojesenSE, et al., 2011. Copy number variation in glutathione-S-transferase T1 and M1 predicts incidence and 5-year survival from prostate and bladder cancer, and incidence of corpus uteri cancer in the general population. Pharmacogenom J, 11(4):292-299. ![]() [43]PeterS, BorkowskaE, DraytonRM, et al., 2014. Identification of differentially expressed long noncoding RNAs in bladder cancer. Clin Cancer Res, 20(20):5311-5321. ![]() [44]PotockiL, BiWM, Treadwell-DeeringD, et al., 2007. Characterization of Potocki-Lupski Syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet, 80(4):633-649. ![]() [45]RedonR, IshikawaS, FitchKR, et al., 2006. Global variation in copy number in the human genome. Nature, 444(7118):444-454. ![]() [46]RobinsonMD, McCarthyDJ, SmythGK, 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1):139-140. ![]() [47]RossJS, WangK, KhairaD, et al., 2016. Comprehensive genomic profiling of 295 cases of clinically advanced urothelial carcinoma of the urinary bladder reveals a high frequency of clinically relevant genomic alterations. Cancer, 122(5):702-711. ![]() [48]RubinsteinJC, BrownTC, GohG, et al., 2016. Chromosome 19 amplification correlates with advanced disease in adrenocortical carcinoma. Surgery, 159(1):296-301. ![]() [49]ShenRL, OlshenAB, LadanyiM, 2009. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 25(22):2906-2912. ![]() [50]SubramanianA, TamayoP, MoothaVK, et al., 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102(43):15545-15550. ![]() [51]The Wellcome Trust Case Control Consortium, 2010. Genome-wide association study of CNVs in 16 000 cases of eight common diseases and 3000 shared controls. Nature, 464(7289):713-720. ![]() [52]XuHT, ZhuX, XuZL, et al., 2015. Non-invasive analysis of genomic copy number variation in patients with hepatocellular carcinoma by next generation DNA sequencing. J Cancer, 6(3):247-253. ![]() [53]YangCJ, LiuZ, ChangXY, et al., 2020. NR2F1‐AS1 regulated miR‐423‐5p/SOX12 to promote proliferation and invasion of papillary thyroid carcinoma. J Cell Biochem, 121(2):2009-2018. ![]() [54]YuGC, WangLG, HanYY, et al., 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16(5):284-287. ![]() [55]ZackTI, SchumacherSE, CarterSL, et al., 2013. Pan-cancer patterns of somatic copy number alteration. Nat Genet, 45(10):1134-1140. ![]() [56]ZhangX, WuJ, WuCC, et al., 2018. The LINC01138 interacts with PRMT5 to promote SREBP1-mediated lipid desaturation and cell growth in clear cell renal cell carcinoma. Biochem Biophys Res Commun, 507(1-4):337-342. ![]() [57]ZhangYW, ZhengAP, XuRP, et al., 2019. NR2F1-induced NR2F1-AS1 promotes esophageal squamous cell carcinoma progression via activating Hedgehog signaling pathway. Biochem Biophys Res Commun, 519(3):497-504. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>