CLC number: S33
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-05-29
Cited: 0
Clicked: 7825
Chengdao Li. Breeding crops by design for future agriculture[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2010001 @article{title="Breeding crops by design for future agriculture", %0 Journal Article TY - JOUR
Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Araus JL, Kefauver SC, Zaman-Allah M, et al., 2018. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci, 23(5):451-466. ![]() [2]Chen Q, Wu FB, 2020. Breeding for low cadmium accumulation cereals. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(6):442-459. ![]() [3]Clemens S, Ma JF, 2016. Toxic heavy metal and metalloid accumulation in crop plants and foods. Ann Rev Plant Biol, 67:489-512. ![]() [4]Fernie AR, Yan JB, 2019. De novo domestication: an alternative route toward new crops for the future. Mol Plant, 12(5):615-631. ![]() [5]Ghosh S, Watson A, Gonzalez-Navarro OE, et al., 2018. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc, 13(12):2944-2963. ![]() [6]Gu RL, Chen FJ, Long LZ, et al., 2016. Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. J Genet Genomics, 43(11):663-672. ![]() [7]Hickey LT, Hafeez AN, Robinson H, et al., 2019. Breeding crops to feed 10 billion. Nat Biotechnol, 37(7):744-754. ![]() [8]Hua K, Tao XP, Zhu JK, 2019. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J, 17(2):499-504. ![]() [9]Huang L, Wu DZ, Zhang GP, 2020. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(6):426-441. ![]() [10]Jiao YP, Peluso P, Shi JH, et al., 2017. Improved maize reference genome with single-molecule technologies. Nature, 546(7659):524-527. ![]() [11]Li CS, Xiang XL, Huang YC, et al., 2020. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun, 11:17. ![]() [12]Li S, Liu SM, Fu HW, et al., 2018. High-resolution melting-based TILLING of γ ray-induced mutations in rice. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(8):620-629. ![]() [13]Liang Z, Chen KL, Li TD, et al., 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun, 8:14261. ![]() [14]Liu MM, Zhang XJ, Gao Y, et al., 2018. Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(8):610-619. ![]() [15]Liu YQ, Wu H, Chen H, et al., 2015. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol, 33(3):301-305. ![]() [16]Lu XK, Fu XQ, Wang DL, et al., 2019. Resequencing of cv CRI-12 family reveals haplotype block inheritance and recombination of agronomically important genes in artificial selection. Plant Biotechnol J, 17(5):945-955. ![]() [17]Ma XF, Wang ZY, Li W, et al., 2019. Resequencing core accessions of a pedigree identifies derivation of genomic segments and key agronomic trait loci during cotton improvement. Plant Biotechnol J, 17(4):762-775. ![]() [18]Maher MF, Nasti RA, Vollbrecht M, et al., 2020. Plant gene editing through de novo induction of meristems. Nat Biotechnol, 38:84-89. ![]() [19]Mascher M, Gundlach H, Himmelbach A, et al., 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 544(7651):427-433. ![]() [20]Mwando E, Angessa TT, Han Y, et al., 2020. Salinity tolerance in barley during germination—homologs and potential genes. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(2):93-121. ![]() [21]National Academies of Sciences, Engineering, and Medicine, 2019. Science Breakthroughs to Advance Food and Agricultural Research by 2030. The National Academies Press, Washington, DC. ![]() [22]https://doi.org/10.17226/25059 ![]() [23]Shan QW, Wang YP, Li J, et al., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc, 9(10):2395-2410. ![]() [24]Song CX, Li W, Pei XY, et al., 2019. Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton. Theor Appl Genet, 132(7):1991-2002. ![]() [25]Svitashev S, Schwartz C, Lenderts B, et al., 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun, 7:13274. ![]() [26]Tan YY, Du H, Wu X, et al., 2020. Gene editing: an instrument for practical application of gene biology to plant breeding. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(6):460-473. ![]() [27]Tang L, Luo WJ, He ZL, et al., 2018. Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(2):147-158. ![]() [28]Wan P, Xu D, Cong SB, et al., 2017. Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm. Proc Natl Acad Sci USA, 114(21):5413-5418. ![]() [29]Wang ZY, Li W, Xiao GH, et al., 2018. Genomic variation mapping and detection of novel genes based on genome-wide survey of an elite upland cotton hybrid (Gossypium hirsutum L.). Curr Sci, 115(4):701-709. ![]() [30]https://doi.org/10.18520/cs/v115/i4/701-709 ![]() [31]Watson A, Ghosh S, Williams MJ, et al., 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants, 4(1):23-29. ![]() [32]Woo JW, Kim J, Kwon SI, et al., 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol, 33(11):1162-1164. ![]() [33]Zong Y, Song QN, Li C, et al., 2018. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol, 36(10):950-953. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>