CLC number:
On-line Access: 2025-03-13
Received: 2023-08-01
Revision Accepted: 2023-11-30
Crosschecked: 2025-03-13
Cited: 0
Clicked: 1887
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-1780-8757
Yue XI, Qifeng JIANG, Wei DAI, Chaozhen CHEN, Yang WANG, Xiaoyan MIAO, Kaichen LAI, Zhiwei JIANG, Guoli YANG, Ying WANG. SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300531 @article{title="SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice", %0 Journal Article TY - JOUR
转录因子SP7改善低密度脂蛋白受体相关蛋白5(LRP5)条件性缺失小鼠的骨缺损愈合1浙江大学医学院附属口腔医院,浙江大学口腔医学院,浙江省口腔疾病临床医学研究中心,浙江省口腔生物医学研究重点实验室,浙江大学癌症研究院,口腔生物材料与器械浙江省工程研究中心, 中国杭州市, 310000 2浙江大学口腔医学院, 中国杭州市, 310058 摘要:低密度脂蛋白受体相关蛋白5(LRP5)的功能丧失突变将导致骨形成减少,从而最终导致低骨量的表型。先前研究报道了LRP5启动子存在转录因子SP7的结合位点。此外,SP7在种植体骨整合过程中具有上调LRP5表达的关键作用。但SP7在改善LRP5缺失所致骨质疏松的作用机制尚不明确。本研究使用成骨细胞LRP5条件性缺失小鼠展开相关研究,该小鼠具有骨质疏松表型。细胞实验结果表明,SP7可促进LRP5表达并上调包括碱性磷酸酶(ALP)、Runt相关转录因子2(Runx2)和β-catenin等成骨相关基因的表达(P<0.05)。体内实验将SP7过表达慢病毒注射到LRP5条件性敲除小鼠骨缺损区域,愈合4周后,与对照组相比,SP7治疗组骨密度(BMD)(P<0.001)和骨体积分数(BV/TV)(P<0.001)显著升高,而骨小梁分离系数(Tb.Sp)显著减小(P<0.05)。上述数据表明,SP7可改善LRP5条件性缺失所致小鼠骨质疏松的骨缺损愈合过程。该研究为改善LRP5缺失所致骨质疏松提供了潜在治疗策略。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BaronR,KneisselM,2013.WNT signaling in bone homeostasis and disease: from human mutations to treatments.Nat Med,19(2):179-192. ![]() [2]BleichNK,KallaiI,LiebermanJR,et al.,2012.Gene therapy approaches to regenerating bone.Adv Drug Deliv Rev,64(12):1320-1330. ![]() [3]CaiH,ZhangHM,HeWT,et al.,2023.Iron accumulation and its impact on osteoporotic fractures in postmenopausal women.J Zhejiang Univ-Sci B (Biomed & Biotechnol),24(4):301-311. ![]() [4]CastrogiovanniP,TrovatoFM,SzychlinskaMA,et al.,2016.The importance of physical activity in osteoporosis.From the molecular pathways to the clinical evidence. Histol Histopathol,31(11):1183-1194. ![]() [5]CauleyJA,GiangregorioL,2020.Physical activity and skeletal health in adults.Lancet Diabetes Endocrinol,8(2):150-162. ![]() [6]CuiYJ,NiziolekPJ,MacDonaldBT,et al.,2011.Lrp5 functions in bone to regulate bone mass.Nat Med,17(6):684-691. ![]() [7]FukudaM,YoshizawaT,KarimMF,et al.,2018.SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/osterix.Nat Commun,9:2833. ![]() [8]GongYQ,SleeRB,FukaiN,et al.,2001.LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.Cell,107(4):513-523. ![]() [9]HafnerM,ZimmermannK,PottgiesserJ,et al.,1995.A purine-rich sequence in the human BM-40 gene promoter region is a prerequisite for maximum transcription.Matrix Biol,14(9):733-741. ![]() [10]HeGP,NieJJ,LiuX,et al.,2023.Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway.Bioact Mater,19:690-702. ![]() [11]HillTP,SpäterD,TaketoMM,et al.,2005.Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes.Dev Cell,8(5):727-738. ![]() [12]HofbauerLC,MaischB,SchaeferJR,2002.High bone density due to a mutation in LDL-receptor-related protein 5.N Engl J Med,347(12):943-944. ![]() [13]HoshikawaS,ShimizuK,WatahikiA,et al.,2020.Phosphorylation-dependent osterix degradation negatively regulates osteoblast differentiation.FASEB J,34(11):14930-14945. ![]() [14]JiangZW,WangHM,YuK,et al.,2017.Light-controlled BMSC sheet-implant complexes with improved osteogenesis via an LRP5/β-catenin/Runx2 regulatory loop. ACS Appl Mater Interfaces,9(40):34674-34686. ![]() [15]JiangZW,YuK,FengYT,et al.,2020.An effective light activated TiO2 nanodot platform for gene delivery within cell sheets to enhance osseointegration.Chem Eng J,402:126170. ![]() [16]KarikóK,BucksteinM,NiHP,et al.,2005.Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA.Immunity,23(2):165-175. ![]() [17]KatchkovskyS,ChatterjeeB,Abramovitch-DahanCV,et al.,2022.Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions.Cell Mol Life Sci,79(2):113. ![]() [18]KhanA,FornesO,StiglianiA,et al.,2018.JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework.Nucleic Acids Res,46(D1):D1284. ![]() [19]KimHJ,LeeS,ParkJM,et al.,2021.Development of a three-layer consecutive gene delivery system for enhanced bone regeneration.Biomaterials,277:121104. ![]() [20]KimJH,SeongS,KimK,et al.,2016.Downregulation of Runx2 by 1,25-dihydroxyvitamin D3 induces the transdifferentiation of osteoblasts to adipocytes.Int J Mol Sci,17(5):770. ![]() [21]KnightMN,KaruppaiahK,LoweM,et al.,2018.R-spondin-2 is a Wnt agonist that regulates osteoblast activity and bone mass.Bone Res,6:24. ![]() [22]KootstraNA,VermaIM,2003.Gene therapy with viral vectors.Annu Rev Pharmacol Toxicol,43:413-439. ![]() [23]LambertSA,JolmaA,CampitelliLF,et al.,2018.The human transcription factors.Cell,175(2):598-599. ![]() [24]LedoAM,SenraA,Rilo-AlvarezH,et al.,2020.mRNA-activated matrices encoding transcription factors as primers of cell differentiation in tissue engineering.Biomaterials,247:120016. ![]() [25]LeeTI,YoungRA,2013.Transcriptional regulation and its misregulation in disease.Cell,152(6):1237-1251. ![]() [26]LeuchtP,LeeS,YimN,2019.Wnt signaling and bone regeneration: can’t have one without the other.Biomaterials,196:46-50. ![]() [27]LimWH,LiuB,MahSJ,et al.,2015.Alveolar bone turnover and periodontal ligament width are controlled by Wnt.J Periodontol,86(2):319-326. ![]() [28]LittleRD,FolzC,ManningSP,et al.,2002.A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait.Am J Hum Genet,70(1):11-19. ![]() [29]LuiJC,RaimannA,HojoH,et al.,2022.A neomorphic variant in SP7 alters sequence specificity and causes a high-turnover bone disorder.Nat Commun,13:700. ![]() [30]MeadTJ,2020.Alizarin red and Alcian blue preparations to visualize the skeleton.Methods Mol Biol,2043:207-212. ![]() [31]Muñoz-GarachA,García-FontanaB,Muñoz-TorresM,2020.Nutrients and dietary patterns related to osteoporosis.Nutrients,12(7):1986. ![]() [32]NakashimaK,ZhouX,KunkelG,et al.,2002.The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.Cell,108(1):17-29. ![]() [33]RigueurD,LyonsKM,2014.Whole-mount skeletal staining.Methods Mol Biol,1130:113-121. ![]() [34]Rilo-AlvarezH,LedoAM,VidalA,et al.,2021.Delivery of transcription factors as modulators of cell differentiation.Drug Deliv Transl Res,11(2):426-444. ![]() [35]SchlakeT,ThessA,ThranM,et al.,2019.mRNA as novel technology for passive immunotherapy.Cell Mol Life Sci,76(2):301-328. ![]() [36]SongKH,NamYJ,LuoX,et al.,2012.Heart repair by reprogramming non-myocytes with cardiac transcription factors.Nature,485(7400):599-604. ![]() [37]SongLG,LiuML,OnoN,et al.,2012.Loss of Wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res,27(11):2344-2358. ![]() [38]TuQS,ValverdeP,LiS,et al.,2007.Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone.Tissue Eng,13(10):2431-2440. ![]() [39]WangB,HuangSY,PanLN,et al.,2013.Enhancement of bone formation by genetically engineered human umbilical cord-derived mesenchymal stem cells expressing osterix.Oral Surg Oral Med Oral Pathol Oral Radiol,116(4):e221-e229. ![]() [40]WangJS,KamathT,MazurCM,et al.,2021.Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin.Nat Commun,12:6271. ![]() [41]WangPP,Logeart-AvramoglouD,PetiteH,et al.,2020.Co-delivery of NS1 and BMP2 mRNAs to murine pluripotent stem cells leads to enhanced BMP-2 expression and osteogenic differentiation.Acta Biomater,108:337-346. ![]() [42]WisitrasameewongW,ChampaiboonC,SurisaengT,et al.,2022.The impact of mRNA technology in regenerative therapy: lessons for oral tissue regeneration.J Dent Res,101(9):1015-1024. ![]() [43]WitcherPC,MinerSE,HoranDJ,et al.,2018.Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition.JCI Insight,3(11):e98673. ![]() [44]XiangL,MaL,WeiN,et al.,2017.Effect of lentiviral vector overexpression α-calcitonin gene-related peptide on titanium implant osseointegration in α-CGRP-deficient mice. Bone,94:135-140. ![]() [45]XuB,ZhangJ,BrewerE,et al.,2009.Osterix enhances BMSC-associated osseointegration of implants.J Dent Res,88(11):1003-1007. ![]() [46]XuJK,HuPJ,ZhangXT,et al.,2022.Magnesium implantation or supplementation ameliorates bone disorder in CFTR-mutant mice through an ATF4-dependent Wnt/β-catenin signaling. Bioact Mater,8:95-108. ![]() [47]YuK,JiangZW,MiaoXY,et al.,2022.circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells during early osseointegration through the SP7/LRP5 axis.Mol Ther,30(10):3226-3240. ![]() [48]ZhongZD,Zylstra-DiegelCR,SchumacherCA,et al.,2012.Wntless functions in mature osteoblasts to regulate bone mass.Proc Natl Acad Sci USA,109(33):E2197-E2204. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>