CLC number:
On-line Access: 2025-08-25
Received: 2023-12-21
Revision Accepted: 2024-07-16
Crosschecked: 2025-08-25
Cited: 0
Clicked: 1674
Bicong GAO, Chenlu SHEN, Kejia LV, Xuehui LI, Yongting ZHANG, Fan SHI, Hongyan DIAO, Hua YAO. Mitochondria derived from human embryonic stem cell-derived mesenchymal stem cells alleviate the inflammatory response in human gingival fibroblasts[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300928 @article{title="Mitochondria derived from human embryonic stem cell-derived mesenchymal stem cells alleviate the inflammatory response in human gingival fibroblasts", %0 Journal Article TY - JOUR
人胚胎干细胞衍生间充质干细胞来源的线粒体减轻人牙龈成纤维细胞的炎症反应1浙江大学医学院附属第一医院口腔科,中国杭州市,310003 2浙江大学医学院附属第一医院传染病诊治国家重点实验室,国家感染性疾病临床医学研究中心,感染性疾病诊治协同创新中心,中国杭州市,310003 摘要:牙周炎是一种由细菌和过度宿主免疫反应引起的常见口腔疾病。干细胞疗法是一种治疗牙周炎的策略,但其相关机制较为复杂。本研究旨在探索人胚胎干细胞衍生间充质干细胞(hESC-MSCs)来源的线粒体治疗牙周炎的潜力。本研究发现牙周炎患者的牙龈组织线粒体结构异常,并通过5 μg/mL脂多糖(LPS)刺激人牙龈成纤维细胞(HGFs)24小时以构建细胞损伤模型。与对照组相比,在使用hESC-MSCs或从hESC-MSCs提取的线粒体进行处理后,HGFs的炎症基因表达减少,三磷酸腺苷(ATP)水平升高,活性氧物种(ROS)生成减少,以及线粒体功能增强。经流式细胞术测定,分离线粒体的平均转移效率为8.93%。此外,对LPS诱导的牙周炎小鼠进行局部线粒体注射治疗后,牙龈组织中炎症基因表达减少,但线粒体的数量和长宽比均有所增加。本研究结果表明,hESC-MSCs来源的线粒体可减轻炎症反应,并改善HGFs的线粒体功能,提示线粒体在hESC-MSCs和HGFs间的转移是干细胞治疗作用的潜在机制。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AnituaE, PradoR, OriveG, 2013. Endogenous morphogens and fibrin bioscaffolds for stem cell therapeutics. Trends Biotechnol, 31(6):364-374. ![]() [2]BorcherdingN, BrestoffJR, 2023. The power and potential of mitochondria transfer. Nature, 623(7986):283-291. ![]() [3]BrozP, PelegrínP, ShaoF, 2020. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol, 20(3):143-157. ![]() [4]CaicedoA, FritzV, BrondelloJM, et al., 2015. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep, 5:9073. ![]() [5]ChappleILC, MatthewsJB, 2007. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000, 43(1):160-232. ![]() [6]ChewJRJ, ChuahSJ, TeoKYW, et al., 2019. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater, 89:252-264. ![]() [7]Dutra SilvaJ, SuY, CalfeeCS, et al., 2021. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J, 58(1):2002978. ![]() [8]HuangC, ZhangC, YangP, et al., 2020. Eldecalcitol inhibits LPS-induced NLRP3 inflammasome-dependent pyroptosis in human gingival fibroblasts by activating the Nrf2/HO-1 signaling pathway. Drug Des Devel Ther, 14:4901-4913. ![]() [9]JiangWT, WangYJ, CaoZL, et al., 2023. The role of mitochondrial dysfunction in periodontitis: from mechanisms to therapeutic strategy. J Periodontal Res, 58(5):853-863. ![]() [10]KimMJ, HwangJW, YunCK, et al., 2018. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep, 8:3330. ![]() [11]LevouxJ, ProlaA, LafusteP, et al., 2021. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab, 33(2):283-299.e9. ![]() [12]LiX, ZhangYL, YeungSC, et al., 2014. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol, 51(3):455-465. ![]() [13]LiY, LingJQ, JiangQZ, 2021. Inflammasomes in alveolar bone loss. Front Immunol, 12:691013. ![]() [14]LinRZ, ImGB, LuoAC, et al., 2024. Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature, 629(8012):660-668. ![]() [15]LiuCC, MoLY, NiuYL, et al., 2017. The role of reactive oxygen species and autophagy in periodontitis and their potential linkage. Front Physiol, 8:439. ![]() [16]LiuDL, GaoYS, LiuJ, et al., 2021. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther, 6:65. ![]() [17]LiuJ, WangXX, XueF, et al., 2022. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis. J Periodontal Res, 57(1):94-103. ![]() [18]LiuJ, WangXX, ZhengM, et al., 2023. Oxidative stress in human gingival fibroblasts from periodontitis versus healthy counterparts. Oral Dis, 29(3):1214-1225. ![]() [19]LiuY, FuTL, LiGR, et al., 2023. Mitochondrial transfer between cell crosstalk ‒ an emerging role in mitochondrial quality control. Ageing Res Rev, 91:102038. ![]() [20]MaremandaKP, SundarIK, RahmanI, 2019. Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicol Appl Pharmacol, 385:114788. ![]() [21]NakaoY, FukudaT, ZhangQZ, et al., 2021. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater, 122:306-324. ![]() [22]PaknejadM, EslaminejadMB, GhaediB, et al., 2015. Isolation and assessment of mesenchymal stem cells derived from bone marrow: histologic and histomorphometric study in a canine periodontal defect. J Oral Implantol, 41(3):284-291. ![]() [23]PaliwalS, ChaudhuriR, AgrawalA, et al., 2018. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Res Ther, 9:298. ![]() [24]PiaoLM, HuangZ, InoueA, et al., 2022. Human umbilical cord-derived mesenchymal stromal cells ameliorate aging-associated skeletal muscle atrophy and dysfunction by modulating apoptosis and mitochondrial damage in SAMP10 mice. Stem Cell Res Ther, 13:226. ![]() [25]RegmiS, PathakS, KimJO, et al., 2019. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. Eur J Cell Biol, 98(5-8):151041. ![]() [26]RenJ, SuD, LiLX, et al., 2020. Anti-inflammatory effects of aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways. Toxicol Appl Pharmacol, 387:114846. ![]() [27]Rodríguez-FuentesDE, Fernández-GarzaLE, Samia-MezaJA, et al., 2021. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res, 52(1):93-101. ![]() [28]SeoJH, JeonYJ, 2022. Global proteomic analysis of mesenchymal stem cells derived from human embryonic stem cells via connective tissue growth factor treatment under chemically defined feeder-free culture conditions. J Microbiol Biotechnol, 32(1):126-140. ![]() [29]ShanmughapriyaS, LangfordD, NatarajaseenivasanK, 2020. Inter and intracellular mitochondrial trafficking in health and disease. Ageing Res Rev, 62:101128. ![]() [30]SunXY, MaoYX, DaiPP, et al., 2017. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes. J Clin Periodontol, 44(5):463-471. ![]() [31]XuSL, DengKQ, LuCB, et al., 2024. Interleukin-6 classic and trans-signaling utilize glucose metabolism reprogramming to achieve anti- or pro-inflammatory effects. Metabolism, 155:155832. ![]() [32]ZhangYL, YuZD, JiangD, et al., 2016. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Reports, 7(4):749-763. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>