CLC number:
On-line Access: 2025-07-28
Received: 2024-01-30
Revision Accepted: 2024-05-09
Crosschecked: 2025-07-28
Cited: 0
Clicked: 1175
Citations: Bibtex RefMan EndNote GB/T7714
Xin LV, Jie LIU, Shuo MA, Yuhan WANG, Yixin PAN, Xian QIU, Yu CAO, Bomin SUN, Shikun ZHAN. Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2400048 @article{title="Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys", %0 Journal Article TY - JOUR
甲基苯丙胺急性暴露通过影响慢波与delta振荡的竞争性耦合作用破坏恒河猴睡眠稳态1上海交通大学医学院附属瑞金医院功能神经外科中心,中国上海市,200025 2上海交通大学医学院瑞金医院神经外科,中国上海市,200025 3上海交通大学医学院附属瑞金医院护理部,中国上海市,200025 4上海交通大学护理学院,中国上海市,200025 5山东省精神卫生中心,中国济南市,250014 摘要:苯丙胺类兴奋剂的滥用是全球重要的公共健康风险之一。近期研究指出,处方安非他命类药物的滥用呈现显著上升趋势。然而,急性甲基苯丙胺暴露(AME)影响睡眠稳态的神经生理机制仍有待探索。本研究采用非人灵长类动物(恒河猴)为模型,利用脑电图(EEG)睡眠分期的方法评估AME对神经振荡的调控作用,并重点研究AME对睡眠纺锤波、delta波和慢波(SO)的差异性影响,及其在睡眠稳定性调控中的相互作用机制。AME显著抑制非快速眼动2期(NREM2)的睡眠纺锤波,并对SO和delta波具有差异性调控作用。此外,甲基苯丙胺特异性增强了SO和delta波与睡眠纺锤波的嵌套关系;复杂度特征分析发现,SO嵌套的纺锤波维持睡眠深度和稳定性的生理功能也出现显著损伤。上述结果在神经振荡网络层面上阐述了AME导致睡眠稳态破坏的内在电生理机制。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AndersenML, DiazMP, MurnaneKS, et al., 2013. Effects of methamphetamine self-administration on actigraphy-based sleep parameters in rhesus monkeys. Psychopharmacology (Berl), 227(1):101-107. ![]() [2]BainganaF, al'AbsiM, BeckerAE, et al., 2015. Global research challenges and opportunities for mental health and substance-use disorders. Nature, 527(7578):S172-S177. ![]() [3]BandarabadiM, HerreraCG, GentTC, et al., 2020. A role for spindles in the onset of rapid eye movement sleep. Nat Commun, 11:5247. ![]() [4]BassettiCLA, AdamantidisA, BurdakovD, et al., 2019. Narcolepsy—clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol, 15(9):519-539. ![]() [5]BerroLF, AndersenML, TufikS, et al., 2016. Actigraphy-based sleep parameters during the reinstatement of methamphetamine self-administration in rhesus monkeys. Exp Clin Psychopharmacol, 24(2):142-146. ![]() [6]BerroLF, OvertonJS, RowlettJK, 2022. Methamphetamine-induced sleep impairments and subsequent slow-wave and rapid eye movement sleep rebound in male rhesus monkeys. Front Neurosci, 16:866971. ![]() [7]BrockmannPE, BruniO, Kheirandish-GozalL, et al., 2020. Reduced sleep spindle activity in children with primary snoring. Sleep Med, 65:142-146. ![]() [8]BrodtS, InostrozaM, NiethardN, et al., 2023. Sleep—a brain-state serving systems memory consolidation. Neuron, 111(7):1050-1075. ![]() [9]CastelnovoA, D'AgostinoA, CasettaC, et al., 2016. Sleep spindle deficit in schizophrenia: contextualization of recent findings. Curr Psychiatry Rep, 18(8):72. ![]() [10]ChenC, WangK, BelkacemAN, et al., 2023. A comparative analysis of sleep spindle characteristics of sleep-disordered patients and normal subjects. Front Neurosci, 17:1110320. ![]() [11]ComerSD, HartCL, WardAS, et al., 2001. Effects of repeated oral methamphetamine administration in humans. Psychopharmacology (Berl), 155(4):397-404. ![]() [12]CruickshankCC, DyerKR, 2009. A review of the clinical pharmacology of methamphetamine. Addiction, 104(7):1085-1099. ![]() [13]DaleyJT, TurnerRS, FreemanA, et al., 2006. Prolonged assessment of sleep and daytime sleepiness in unrestrained Macaca mulatta. Sleep, 29(2):221-231. ![]() [14]DiekelmannS, BornJ, 2010. The memory function of sleep. Nat Rev Neurosci, 11(2):114-126. ![]() [15]FazelS, LångströmN, HjernA, et al., 2009. Schizophrenia, substance abuse, and violent crime. JAMA, 301(19):2016-2023. ![]() [16]GirardeauG, Lopes-Dos-SantosV, 2021. Brain neural patterns and the memory function of sleep. Science, 374(6567):560-564. ![]() [17]HahnMA, HeibD, SchabusM, et al., 2020. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife, 9:e53730. ![]() [18]HedgesDM, ObrayJD, YorgasonJT, et al., 2018. Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology, 43(6):1405-1414. ![]() [19]HelfrichRF, ManderBA, JagustWJ, et al., 2018. Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron, 97(1):221-230.e4. ![]() [20]HerbeckDM, BrechtML, LovingerK, 2015. Mortality, causes of death, and health status among methamphetamine users. J Addict Dis, 34(1):88-100. ![]() [21]HerrmannES, JohnsonPS, BrunerNR, et al., 2017. Morning administration of oral methamphetamine dose-dependently disrupts nighttime sleep in recreational stimulant users. Drug Alcohol Depend, 178:291-295. ![]() [22]HouFZ, ZhangLL, QinBK, et al., 2021. Changes in EEG permutation entropy in the evening and in the transition from wake to sleep. Sleep, 44(4):zsaa226. ![]() [23]IshikawaA, SakaiK, MakiT, et al., 2017. Investigation of sleep-wake rhythm in non-human primates without restraint during data collection. Exp Anim, 66(1):51-60. ![]() [24]JoechnerAK, HahnMA, GruberG, et al., 2023. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife, 12:e83565. ![]() [25]KaulenL, SchwabedalJTC, SchneiderJ, et al., 2022. Advanced sleep spindle identification with neural networks. Sci Rep, 12:7686. ![]() [26]KeshmiriS, 2020. Entropy and the brain: an overview. Entropy (Basel), 22(9):917. ![]() [27]KimJ, GulatiT, GangulyK, 2019. Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell, 179(2):514-526.e13. ![]() [28]KimJ, JoshiA, FrankL, et al., 2023. Cortical-hippocampal coupling during manifold exploration in motor cortex. Nature, 613(7942):103-110. ![]() [29]KjaerbyC, AndersenM, HauglundN, et al., 2022. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci, 25(8):1059-1070. ![]() [30]LiYD, DongHB, LiF, et al., 2017. Microstructures in striato-thalamo-orbitofrontal circuit in methamphetamine users. Acta Radiol, 58(11):1378-1385. ![]() [31]LiangXY, XiongJL, CaoZT, et al., 2021. Decreased sample entropy during sleep-to-wake transition in sleep apnea patients. Physiol Meas, 42(4):044001. ![]() [32]LvX, ZhangXL, ZhaoQ, et al., 2022. Acute stress promotes brain oscillations and hippocampal-cortical dialog in emotional processing. Biochem Biophys Res Commun, 598:55-61. ![]() [33]MaY, ShiWB, PengCK, et al., 2018. Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Med Rev, 37:85-93. ![]() [34]MaingretN, GirardeauG, TodorovaR, et al., 2016. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci, 19(7):959-964. ![]() [35]MalkaniRG, ZeePC, 2020. Brain stimulation for improving sleep and memory. Sleep Med Clin, 15(1):101-115. ![]() [36]McElroySL, 2017. Pharmacologic treatments for binge-eating disorder. J Clin Psychiatry, 78(Suppl 1):14-19. ![]() [37]MendesRAV, ZachariasLR, RuggieroRN, et al., 2021. Hijacking of hippocampal-cortical oscillatory coupling during sleep in temporal lobe epilepsy. Epilepsy Behav, 121:106608. ![]() [38]MiyamotoD, HiraiD, MurayamaM, 2017. The roles of cortical slow waves in synaptic plasticity and memory consolidation. Front Neural Circuits, 11:92. ![]() [39]MoralesAM, KohnoM, RobertsonCL, et al., 2015. Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users. Mol Psychiatry, 20(6):764-771. ![]() [40]MuehlrothBE, SanderMC, FandakovaY, et al., 2019. Precise slow oscillation-spindle coupling promotes memory consolidation in younger and older adults. Sci Rep, 9:1940. ![]() [41]MurnaneKS, AndersenML, RiceKC, et al., 2013. Selective serotonin 2A receptor antagonism attenuates the effects of amphetamine on arousal and dopamine overflow in non-human primates. J Sleep Res, 22(5):581-588. ![]() [42]NunesEV, KunzK, GalanterM, et al., 2020. Addiction psychiatry and addiction medicine: the evolution of addiction physician specialists. Am J Addict, 29(5):390-400. ![]() [43]PaulusMP, StewartJL, 2020. Neurobiology, clinical presentation, and treatment of methamphetamine use disorder: a review. JAMA Psychiatry, 77(9):959-966. ![]() [44]PerezAY, KirkpatrickMG, GundersonEW, et al., 2008. Residual effects of intranasal methamphetamine on sleep, mood, and performance. Drug Alcohol Depend, 94(1-3):258-262. ![]() [45]PosnerJ, PolanczykGV, Sonuga-BarkeE, 2020. Attention-deficit hyperactivity disorder. Lancet, 395(10222):450-462. ![]() [46]RommelN, RohlederNH, WagenpfeilS, et al., 2015. Evaluation of methamphetamine-associated socioeconomic status and addictive behaviors, and their impact on oral health. Addict Behav, 50:182-187. ![]() [47]RuchS, SchmidigFJ, KnüselL, et al., 2022. Closed-loop modulation of local slow oscillations in human NREM sleep. Neuroimage, 264:119682. ![]() [48]SathyanarayanaA, el AtracheR, JacksonM, et al., 2021. Measuring the effects of sleep on epileptogenicity with multifrequency entropy. Clin Neurophysiol, 132(9):2012-2018. ![]() [49]SchönauerM, PöhlchenD, 2018. Sleep spindles. Curr Biol, 28(19):R1129-R1130. ![]() [50]ShalabyAS, BahananAO, AlshehriMH, et al., 2022. Sleep deprivation & amphetamine induced psychosis. Psychopharmacol Bull, 52(3):31-40. ![]() [51]SunHQ, ChenHM, YangFD, et al., 2014. Epidemiological trends and the advances of treatments of amphetamine-type stimulants (ATS) in China. Am J Addict, 23(3):313-317. ![]() [52]TroynikovO, WatsonCG, NawazN, 2018. Sleep environments and sleep physiology: a review. J Therm Biol, 78:192-203. ![]() [53]van Emmerik-van OortmerssenK, van de GlindG, van den BrinkW, et al., 2012. Prevalence of attention-deficit hyperactivity disorder in substance use disorder patients: a meta-analysis and meta-regression analysis. Drug Alcohol Depend, 122(1-2):11-19. ![]() [54]Vivolo-KantorAM, HootsBE, SethP, et al., 2020. Recent trends and associated factors of amphetamine-type stimulant overdoses in emergency departments. Drug Alcohol Depend, 216:108323. ![]() [55]VolkowND, ChangLD, WangGJ, et al., 2001. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry, 158(3):383-389. ![]() [56]VrajováM, ŠlamberováR, HoschlC, et al., 2021. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep, 44(6):zsab001. ![]() [57]WartonFL, MeintjesEM, WartonCMR, et al., 2018. Prenatal methamphetamine exposure is associated with reduced subcortical volumes in neonates. Neurotoxicol Teratol, 65:51-59. ![]() [58]WengYY, LeiX, YuJ, 2020. Sleep spindle abnormalities related to Alzheimer’s disease: a systematic mini-review. Sleep Med, 75:37-44. ![]() [59]WhitefordHA, DegenhardtL, RehmJ, et al., 2013. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet, 382(9904):1575-1586. ![]() [60]WinslowBT, VoorheesKI, PehlKA, 2007. Methamphetamine abuse. Am Fam Physician, 76(8):1169-1174. ![]() [61]ZhangZY, CampbellIG, DhayagudeP, et al., 2021. Longitudinal analysis of sleep spindle maturation from childhood through late adolescence. J Neurosci, 41(19):4253-4261. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>