
CLC number:
On-line Access: 2025-06-23
Received: 2024-04-12
Revision Accepted: 2024-06-04
Crosschecked: 2025-09-23
Cited: 0
Clicked: 2083
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0006-7783-243X
https://orcid.org/0009-0003-4079-3332
https://orcid.org/0009-0002-3453-7570
https://orcid.org/0009-0009-8840-7131
https://orcid.org/0009-0007-8996-6790
Xiaodan HUANG, Yue FANG, Jie SONG, Yuanjing HAO, Yuanyuan CAI, Pengfei WEI, Na ZHANG. Rescuing lysosomal/autophagic defects via nanoapproach: implications for lysosomal/autophagic defect-related diseases[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2400186 @article{title="Rescuing lysosomal/autophagic defects via nanoapproach: implications for lysosomal/autophagic defect-related diseases", %0 Journal Article TY - JOUR
通过纳米方法恢复溶酶体/自噬缺陷:对溶酶体/自噬缺陷相关疾病的意义1滨州医学院药学院, 山东省分子靶向智能诊疗技术创新中心, 中国烟台市, 264003 2浙江省中西医结合医院, 杭州市红十字会医院, 中国杭州市, 310003 摘要:溶酶体和自噬-溶酶体系统的功能障碍是神经退行性、代谢紊乱性、炎症性疾病和其他相关疾病的驱动力,影响疾病的发生和发展。因此,恢复溶酶体或自噬-溶酶体系统功能在上述疾病治疗中已成为日益重要的策略。本文对溶酶体的生物发生、结构和功能,以及自噬-溶酶体系统的生物学过程展开介绍;综述了与溶酶体/自噬功能障碍密切相关的各种疾病,揭示调节溶酶体或自噬-溶酶体系统功能在疾病治疗中的重要性;重点探讨了能够恢复溶酶体或自噬-溶酶体系统功能的工程化纳米材料,并对实现这一目标的不同策略和方法进行总结。本文旨在阐明纳米医学领域治疗溶酶体/自噬缺陷相关疾病的最新进展,并推动具有临床价值的创新纳米药物的开发。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbokyiS, Ghartey-KwansahG, TseDYY, 2023. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev, 89:101985. ![]() [2]AhmadiA, ArgulianE, LeipsicJ, et al., 2019. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review. J Am Coll Cardiol, 74(12):1608-1617. ![]() [3]AmanY, Schmauck-MedinaT, HansenM, et al., 2021. Autophagy in healthy aging and disease. Nat Aging, 1:634-650. ![]() [4]AndersonJM, ShiveMS, 1997. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Delivery Rev, 28:5-24. ![]() [5]AntonucciL, FagmanJB, KimJY, et al., 2015. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci USA, 112(45):E6166-E6174. ![]() [6]ArdanT, BaxaM, LevinskáB, et al., 2020. Transgenic minipig model of Huntington’s disease exhibiting gradually progressing neurodegeneration. Dis Models Mech, 13(2):dmm041319. ![]() [7]ArotcarenaML, SoriaFN, CunhaA, et al., 2022. Acidic nanoparticles protect against α-synuclein-induced neurodegeneration through the restoration of lysosomal function. Aging Cell, 21(4):e13584. ![]() [8]AssaliEA, ShlomoD, ZengJJ, et al., 2019. Nanoparticle-mediated lysosomal reacidification restores mitochondrial turnover and function in β cells under lipotoxicity. FASEB J, 33(3):4154-4165. ![]() [9]AyyildizD, BergonzoniG, MonzianiA, et al., 2023. CAG repeat expansion in the Huntington’s disease gene shapes linear and circular RNAs biogenesis. PLoS Genet, 19(10):e1010988. ![]() [10]BagshawRD, MahuranDJ, CallahanJW, 2005. A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol Cell Proteomics, 4(2):133-143. ![]() [11]BallabioA, BonifacinoJS, 2020. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol, 21(2):101-118. ![]() [12]BaltazarGC, GuhaS, LuWN, et al., 2012. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS ONE, 7(12):e49635. ![]() [13]Ben-ShlomoY, DarweeshS, Llibre-GuerraJ, et al., 2024. The epidemiology of Parkinson’s disease. Lancet, 403(10423):283-292. ![]() [14]BourdenxM, DanielJ, GeninE, et al., 2016. Nanoparticles restore lysosomal acidification defects: implications for Parkinson and other lysosomal-related diseases. Autophagy, 12(3):472-483. ![]() [15]BoyaP, 2012. Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signaling, 17(5):766-774. ![]() [16]BraulkeT, CaretteJE, PalmW, 2024. Lysosomal enzyme trafficking: from molecular mechanisms to human diseases. Trends Cell Biol, 34(3):198-210. ![]() [17]BrouillardM, BarthélémyP, DehayB, et al., 2021. Nucleolipid acid-based nanocarriers restore neuronal lysosomal acidification defects. Front Chem, 9:736554. ![]() [18]BrouillardM, KinetR, JoyeuxM, et al., 2023. Modulating lysosomal pH through innovative multimerized succinic acid-based nucleolipid derivatives. Bioconjugate Chem, 34(3):572-580. ![]() [19]BruijnLI, HouseweartMK, KatoS, et al., 1998. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science, 281(5384):1851-1854. ![]() [20]CaiXS, SheMQ, XuMY, et al., 2018. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int J Biol Sci, 14(12):1696-1708. ![]() [21]CalabresiP, di LazzaroG, MarinoG, et al., 2023. Advances in understanding the function of alpha-synuclein: implications for Parkinson’s disease. Brain, 146(9):3587-3597. ![]() [22]CarlssonSR, FukudaM, 1992. The lysosomal membrane glycoprotein lamp-1 is transported to lysosomes by two alternative pathways. Arch Biochem Biophys, 296(2):630-639. ![]() [23]CeccarigliaS, CargnoniA, SiliniAR, et al., 2020. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy, 16(1):28-37. ![]() [24]ChapelA, Kieffer-JaquinodS, SagnéC, et al., 2013. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics, 12(6):1572-1588. ![]() [25]ChattopadhyayM, ValentineJS, 2009. Aggregation of copper–zinc superoxide dismutase in familial and sporadic ALS. Antioxid Redox Signaling, 11(7):1603-1614. ![]() [26]ChenHY, YeTW, HuFQ, et al., 2023. Urchin-like ceria nanoparticles for enhanced gene therapy of osteoarthritis. Sci Adv, 9(24):eadf0988. ![]() [27]ChenS, ZhangXJ, SongL, et al., 2012. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol, 22:110-116. ![]() [28]ChenX, PanditS, ShiL, et al., 2023. Graphene oxide attenuates toxicity of amyloid-β aggregates in yeast by promoting disassembly and boosting cellular stress response. Adv Funct Mater, 33(45):2304053. ![]() [29]ChenYK, ZengA, HeSM, et al., 2021. Autophagy-related genes in atherosclerosis. J Healthc Eng, 2021:6402206. ![]() [30]ChithraniBD, ChanWCW, 2007. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett, 7(6):1542-1550. ![]() [31]ChithraniBD, GhazaniAA, ChanWCW, 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 6(4):662-668. ![]() [32]ChoWS, DuffinR, HowieSEM, et al., 2011. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol, 8:27. ![]() [33]ChoiI, WangMH, YooS, et al., 2023. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. Nat Cell Biol, 25(7):963-974. ![]() [34]ChuFX, LiK, LiXL, et al., 2021. Graphene oxide ameliorates the cognitive impairment through inhibiting PI3K/Akt/mTOR pathway to induce autophagy in AD mouse model. Neurochem Res, 46(2):309-325. ![]() [35]CunhaA, PrévotG, MousliY, et al., 2020. Synthesis and intracellular uptake of rhodamine–nucleolipid conjugates into a nanoemulsion vehicle. ACS Omega, 5(11):5815-5823. ![]() [36]dal CantoMC, GurneyME, 1995. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res, 676:25-40. ![]() [37]DavoodyS, TaeiAA, KhodabakhshP, et al., 2024. mTOR signaling and Alzheimer’s disease: what we know and where we are? CNS Neurosci Ther, 30(4):e14463. ![]() [38]DehayB, BovéJ, Rodríguez-MuelaN, et al., 2010. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci, 30(37):12535-12544. ![]() [39]DevadigaSJ, BharateSS, 2022. Recent developments in the management of Huntington’s disease. Bioorg Chem, 120:105642. ![]() [40]DiakopoulosKN, LesinaM, WörmannS, et al., 2015. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex-and nutrition-dependent processes. Gastroenterology, 148(3):626-638.e17. ![]() [41]DikicI, ElazarZ, 2018. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol, 19(6):349-364. ![]() [42]EskelinenEL, 2006. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med, 27(5-6):495-502. ![]() [43]EzquerroS, MochaF, FrühbeckG, et al., 2019. Ghrelin reduces TNF-α-induced human hepatocyte apoptosis, autophagy, and pyroptosis: role in obesity-associated NAFLD. J Clin Endocrinol Metab, 104(1):21-37. ![]() [44]FangEF, Scheibye-KnudsenM, BraceLE, et al., 2014. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell, 157(4):882-896. ![]() [45]FangEF, KassahunH, CroteauDL, et al., 2016. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab, 24(4):566-581. ![]() [46]FangEF, HouYJ, PalikarasK, et al., 2019. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci, 22(3):401-412. ![]() [47]FangEF, XieCL, SchenkelJA, et al., 2020. A research agenda for ageing in China in the 21st century (2nd edition): focusing on basic and translational research, long-term care, policy and social networks. Ageing Res Rev, 64:101174. ![]() [48]FeldmanEL, GoutmanSA, PetriS, et al., 2022. Amyotrophic lateral sclerosis. Lancet, 400(10360):1363-1380. ![]() [49]Frendo-CumboS, TokarzVL, BilanPJ, et al., 2021. Communication between autophagy and insulin action: at the crux of insulin action-insulin resistance? Front Cell Dev Biol, 9:708431. ![]() [50]FukuoY, YamashinaS, SonoueH, et al., 2014. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res, 44(9):1026-1036. ![]() [51]GePP, GaoMX, DuJ, et al., 2021. Downregulation of microRNA-512-3p enhances the viability and suppresses the apoptosis of vascular endothelial cells, alleviates autophagy and endoplasmic reticulum stress as well as represses atherosclerotic lesions in atherosclerosis by adjusting spliced/unspliced ratio of X-box binding protein 1 (XBP-1S/XBP-1U). Bioengineered, 12(2):12469-12481. ![]() [52]SAISMGhazali, FatimahI, ZamilZN, et al., 2023. Graphene quantum dots: a comprehensive overview. Open Chem, 21:20220285. ![]() [53]GissotA, CamploM, GrinstaffMW, et al., 2008. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids. Org Biomol Chem, 6(8):1324-1333. ![]() [54]GriffeyCJ, YamamotoA, 2022. Macroautophagy in CNS health and disease. Nat Rev Neurosci, 23(7):411-427. ![]() [55]GrosF, MullerS, 2023. The role of lysosomes in metabolic and autoimmune diseases. Nat Rev Nephrol, 19(6):366-383. ![]() [56]GukovskayaAS, GukovskyI, 2012. Autophagy and pancreatitis. Am J Physiol-Gastrointest Liver Physiol, 303(9):G993-G1003. ![]() [57]GuoYL, DuanWJ, LuDH, et al., 2021. Autophagy-dependent removal of α-synuclein: a novel mechanism of GM1 ganglioside neuroprotection against Parkinson’s disease. Acta Pharmacol Sin, 42(4):518-528. ![]() [58]HämälistöS, JäätteläM, 2016. Lysosomes in cancer—living on the edge (of the cell). Curr Opin Cell Biol, 39:69-76. ![]() [59]HamburgNM, CreagerMA, 2017. Pathophysiology of intermittent claudication in peripheral artery disease. Circ J, 81(3):281-289. ![]() [60]HeJL, LiuJY, HuangY, et al., 2021. Oxidative stress, inflammation, and autophagy: potential targets of mesenchymal stem cells-based therapies in ischemic stroke. Front Neurosci, 15:641157. ![]() [61]HeLN, ZhaoJT, WangLM, et al., 2021. Using nano-selenium to combat coronavirus disease 2019 (COVID-19)? Nano Today, 36:101037. ![]() [62]HeLZ, HuangGN, LiuHX, et al., 2020. Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci Adv, 6(12):eaay9751. ![]() [63]HerringtonW, LaceyB, SherlikerP, et al., 2016. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res, 118(4):535-546. ![]() [64]HollandLKK, NielsenIØ, MaedaK, et al., 2020. Snapshot: lysosomal functions. Cell, 181(3):748-748.e1. ![]() [65]HongSE, AnJH, YuSL, et al., 2020. Ceria-zirconia antioxidant nanoparticles attenuate hypoxia-induced acute kidney injury by restoring autophagy flux and alleviating mitochondrial damage. J Biomed Nanotechnol, 16(7):1144-1159. ![]() [66]HoweCL, GrangerBL, HullM, et al., 1988. Derived protein sequence, oligosaccharides, and membrane insertion of the 120-kDa lysosomal membrane glycoprotein (lgp120): identification of a highly conserved family of lysosomal membrane glycoproteins. Proc Natl Acad Sci USA, 85(20):7577-7581. ![]() [67]HuL, LiuY, WangS, 2018. Stem cell-based tooth and periodontal regeneration. Oral Dis, 24(5):696-705. ![]() [68]HuXD, LinR, ZhangCQ, et al., 2023. Nano-selenium alleviates cadmium-induced mouse leydig cell injury, via the inhibition of reactive oxygen species and the restoration of autophagic flux. Reprod Sci, 30(6):1808-1822. ![]() [69]HuangYY, YuMX, ZhengJ, 2023. Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism. Nat Nanotechnol, 18(6):637-646. ![]() [70]IlievaH, VullagantiM, KwanJ, 2023. Advances in molecular pathology, diagnosis, and treatment of amyotrophic lateral sclerosis. BMJ, 383:e075037. ![]() [71]InamiY, YamashinaS, IzumiK, et al., 2011. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun, 412(4):618-625. ![]() [72]IyaswamyA, ThakurA, GuanXJ, et al., 2023. Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer’s disease. Signal Transduct Target Ther, 8:404. ![]() [73]JanvierK, BonifacinoJS, 2005. Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol Biol Cell, 16(9):4231-4242. ![]() [74]JeongJK, LeeYJ, JeongSY, et al., 2017. Autophagic flux induced by graphene oxide has a neuroprotective effect against human prion protein fragments. Int J Nanomed, 12:8143-8158. ![]() [75]JeromeWG, CoxBE, GriffinEE, et al., 2008. Lysosomal cholesterol accumulation inhibits subsequent hydrolysis of lipoprotein cholesteryl ester. Microsc Microanal, 14(2):138-149. ![]() [76]JinPP, WeiPF, ZhangYJ, et al., 2016. Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide. Nanoscale, 8(44):18740-18750. ![]() [77]JohnsonAA, CuellarTL, 2023. Glycine and aging: evidence and mechanisms. Ageing Res Rev, 87:101922. ![]() [78]KangI, YooJM, KimD, et al., 2021. Graphene quantum dots alleviate impaired functions in Niemann-Pick disease type C in vivo. Nano Lett, 21(5):2339-2346. ![]() [79]KashimaJ, Shintani-IshidaK, NakajimaM, et al., 2014. Immunohistochemical study of the autophagy marker microtubule-associated protein 1 light chain 3 in normal and steatotic human livers. Hepatol Res, 44(7):779-787. ![]() [80]KaurSJ, McKeownSR, RashidS, 2016. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene, 577(2):109-118. ![]() [81]KegelKB, KimM, SappE, et al., 2000. Huntingtin expression stimulates endosomal–lysosomal activity, endosome tubulation, and autophagy. J Neurosci, 20(19):7268-7278. ![]() [82]KimB, KimG, JeonS, et al., 2023. Zinc oxide nanoparticles trigger autophagy-mediated cell death through activating lysosomal TRPML1 in normal kidney cells. Toxicol Rep, 10:529-536. ![]() [83]KimD, YooJM, HwangH, et al., 2018. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat Nanotechnol, 13(9):812-818. ![]() [84]KimYG, LeeY, LeeN, et al., 2024. Ceria-based therapeutic antioxidants for biomedical applications. Adv Mater, 36(10):2210819. ![]() [85]KogaH, KaushikS, CuervoAM, 2010. Altered lipid content inhibits autophagic vesicular fusion. FASEB J, 24(8):3052-3065. ![]() [86]KoleiniN, KardamiE, 2017. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget, 8(28):46663-46680. ![]() [87]KornfeldS, MellmanI, 1989. The biogenesis of lysosomes. Ann Rev Cell Biol, 5:483-525. ![]() [88]KrachF, StemickJ, BoerstlerT, et al., 2022. An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington’s disease patient neurons. Nat Commun, 13:6797. ![]() [89]KumariA, YadavSK, YadavSC, 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces, 75:1-18. ![]() [90]KyleS, SahaS, 2014. Nanotechnology for the detection and therapy of stroke. Adv Healthcare Mater, 3(11):1703-1720. ![]() [91]LabrijnAF, MeestersJI, BunceM, et al., 2017. Efficient generation of bispecific murine antibodies for pre-clinical investigations in syngeneic rodent models. Sci Rep, 7:2476. ![]() [92]LasG, SeradaSB, WikstromJD, et al., 2011. Fatty acids suppress autophagic turnover in β-cells. J Biol Chem, 286(49):42534-42544. ![]() [93]LebeaupinC, ValléeD, HazariY, et al., 2018. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol, 69(4):927-947. ![]() [94]LeeJ, SungKW, BaeEJ, et al., 2023. Targeted degradation of α-synuclein aggregates in Parkinson’s disease using the AUTOTAC technology. Mol Neurodegener, 18:41. ![]() [95]LeeJH, NixonRA, 2022. Autolysosomal acidification failure as a primary driver of Alzheimer disease pathogenesis. Autophagy, 18(11):2763-2764. ![]() [96]LeeJH, YangDS, GoulbourneCN, et al., 2022. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat Neurosci, 25(6):688-701. ![]() [97]LeidalAM, LevineB, DebnathJ, 2018. Autophagy and the cell biology of age-related disease. Nat Cell Biol, 20(12):1338-1348. ![]() [98]LescatL, HerpinA, MourotB, et al., 2018. CMA restricted to mammals and birds: myth or reality? Autophagy, 14(7):1267-1270. ![]() [99]LevineB, KroemerG, 2019. Biological functions of autophagy genes: a disease perspective. Cell, 176(1-2):11-42. ![]() [100]LiDL, WangZV, DingGQ, et al., 2016. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation, 133(17):1668-1687. ![]() [101]LiMC, SalaV, de SantisMC, et al., 2018. Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth. Circulation, 138(7):696-711. ![]() [102]LiQ, YangGW, LiJL, et al., 2020. Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res Ther, 11:427. ![]() [103]LiSL, ZhangCQ, CaoWP, et al., 2015. Anchoring effects of surface chemistry on gold nanorods: modulating autophagy. J Mater Chem B, 3(16):3324-3330. ![]() [104]LiXL, LiK, ChuFX, et al., 2020. Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons. Chem-Biol Interact, 325:109126. ![]() [105]LiZY, WangC, WangZY, et al., 2019. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds. Nature, 575:203-209. ![]() [106]LinL, ZhangMX, ZhangL, et al., 2022. Autophagy, pyroptosis, and ferroptosis: new regulatory mechanisms for atherosclerosis. Front Cell Dev Biol, 9:809955. ![]() [107]LitwiniukA, JuszczakGR, StankiewiczAM, et al., 2023. The role of glial autophagy in Alzheimer’s disease. Mol Psychiatry, 28(11):4528-4539. ![]() [108]LiuHY, HanJM, CaoSY, et al., 2009. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia. J Biol Chem, 284(45):31484-31492. ![]() [109]LiuL, XuQ, ZhangL, et al., 2021. Fe3O4 magnetic nanoparticles ameliorate albumin-induced tubulointerstitial fibrosis by autophagy related to Rab7. Colloids Surf B Biointerfaces, 198:111470. ![]() [110]LiuW, WangG, WangZW, et al., 2022. Repurposing small-molecule drugs for modulating toxic protein aggregates in neurodegenerative diseases. Drug Discovery Today, 27(7):1994-2007. ![]() [111]LiuY, WangXN, WangJ, et al., 2016. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy. Environ Sci Technol, 50(6):3154-3164. ![]() [112]López-OtínC, BlascoMA, PartridgeL, et al., 2023. Hallmarks of aging: an expanding universe. Cell, 186(2):243-278. ![]() [113]LouGF, PalikarasK, LautrupS, et al., 2020. Mitophagy and neuroprotection. Trends Mol Med, 26(1):8-20. ![]() [114]MaNN, LiuPD, HeNY, et al., 2017. Action of gold nanospikes-based nanoradiosensitizers: cellular internalization, radiotherapy, and autophagy. ACS Appl Mater Interfaces, 9(37):31526-31542. ![]() [115]MaXW, WuYY, JinSB, et al., 2011. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano, 5(11):8629-8639. ![]() [116]MahapatroA, SinghDK, 2011. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol, 9:55. ![]() [117]MahmoudiM, AkhavanO, GhavamiM, et al., 2012. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale, 4(23):7322-7325. ![]() [118]MakSK, McCormackAL, Manning-BoğAB, et al., 2010. Lysosomal degradation of α-synuclein in vivo. J Biol Chem, 285(18):13621-13629. ![]() [119]MamaisA, WallingsR, RochaEM, 2023. Disease mechanisms as subtypes: lysosomal dysfunction in the endolysosomal Parkinson’s disease subtype. Handb Clin Neurol, 193:33-51. ![]() [120]MareninovaOA, HermannK, FrenchSW, et al., 2009. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest, 119(11):3340-3355. ![]() [121]MareninovaOA, SendlerM, MallaSR, et al., 2015. Lysosome-associated membrane proteins (LAMP) maintain pancreatic acinar cell homeostasis: LAMP-2–deficient mice develop pancreatitis. Cell Mol Gastroenterol Hepatol, 1(6):678-694. ![]() [122]MariM, BujnyMV, ZeuschnerD, et al., 2008. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic, 9(3):380-393. ![]() [123]MartensS, FracchiollaD, 2020. Activation and targeting of ATG8 protein lipidation. Cell Discov, 6:23. ![]() [124]MartinaJA, ChenY, GucekM, et al., 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 8(6):903-914. ![]() [125]Martinez-VicenteM, TalloczyZ, WongE, et al., 2010. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci, 13(5):567-576. ![]() [126]MattsonMP, ArumugamTV, 2018. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab, 27(6):1176-1199. ![]() [127]MaysingerD, GranER, BertorelleF, et al., 2020. Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes. Theranostics, 10(4):1633-1648. ![]() [128]McColganP, TabriziSJ, 2018. Huntington’s disease: a clinical review. Eur J Neurol, 25(1):24-34. ![]() [129]MenghiniR, CasagrandeV, MarinoA, et al., 2014. MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis, 5:e1029. ![]() [130]MiceliC, LeriM, StefaniM, et al., 2023. Autophagy-related proteins: potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev, 89:101967. ![]() [131]MirSUR, GeorgeNM, ZahoorL, et al., 2015. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem, 290(10):6071-6085. ![]() [132]MizushimaN, KomatsuM, 2011. Autophagy: renovation of cells and tissues. Cell, 147(4):728-741. ![]() [133]MooreKJ, SheedyFJ, FisherEA, 2013. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol, 13(10):709-721. ![]() [134]MorrisHR, SpillantiniMG, SueCM, et al., 2024. The pathogenesis of Parkinson’s disease. Lancet, 403(10423):293-304. ![]() [135]MuhammadP, HanifS, LiJY, et al., 2022. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today, 45:101530. ![]() [136]NowellJ, BluntE, GuptaD, et al., 2023. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease. Ageing Res Rev, 89:101979. ![]() [137]PanL, FeiginA, 2021. Huntington’s disease: new frontiers in therapeutics. Curr Neurol Neurosci Rep, 21(3):10. ![]() [138]PartridgeL, DeelenJ, SlagboomPE, 2018. Facing up to the global challenges of ageing. Nature, 561:45-56. ![]() [139]ParzychKR, KlionskyDJ, 2014. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signaling, 20(3):460-473. ![]() [140]PayneT, BurgessT, BradleyS, et al., 2024. Multimodal assessment of mitochondrial function in Parkinson’s disease. Brain, 147(1):267-280. ![]() [141]PeiXY, LiuDK, LiJJ, et al., 2023. TFEB coordinates autophagy and pyroptosis as hepatotoxicity responses to ZnO nanoparticles. Sci Total Environ, 865:161242. ![]() [142]PeshkovaIO, SchaeferG, KoltsovaEK, 2016. Atherosclerosis and aortic aneurysm – is inflammation a common denominator? FEBS J, 283(9):1636-1652. ![]() [143]PirasA, CollinL, GrüningerF, et al., 2016. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun, 4:22. ![]() [144]PoppL, SegatoriL, 2019. Zinc oxide particles induce activation of the lysosome–autophagy system. ACS Omega, 4(1):573-581. ![]() [145]PresterudR, DengWH, WennerströmAB, et al., 2024. Long-term nicotinamide riboside use improves coordination and eye movements in ataxia telangiectasia. Mov Disord, 39(2):360-369. ![]() [146]PrévotG, SoriaFN, ThiolatML, et al., 2018. Harnessing lysosomal pH through PLGA nanoemulsion as a treatment of lysosomal-related neurodegenerative diseases. Bioconjugate Chem, 29(12):4083-4089. ![]() [147]PrietoGA, CotmanCW, 2022. Early bioenergetic and autophagy impairments at the Parkinson’s disease synapse. Brain, 145(6):1877-1879. ![]() [148]QueirozA, Albuquerque-SouzaE, GasparoniLM, et al., 2021. Therapeutic potential of periodontal ligament stem cells. World J Stem Cells, 13(6):605-618. ![]() [149]RenXQ, ChenYT, PengHB, et al., 2018. Blocking autophagic flux enhances iron oxide nanoparticle photothermal therapeutic efficiency in cancer treatment. ACS Appl Mater Interfaces, 10(33):27701-27711. ![]() [150]RiccardiC, MusumeciD, IraceC, et al., 2017. RuIII complexes for anticancer therapy: the importance of being nucleolipidic. Eur J Org Chem, 2017(7):1100-1119. ![]() [151]RobberechtW, PhilipsT, 2013. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci, 14(4):248-264. ![]() [152]RubinszteinDC, GestwickiJE, MurphyLO, et al., 2007. Potential therapeutic applications of autophagy. Nat Rev Drug Discov, 6(4):304-312. ![]() [153]SaftigP, KlumpermanJ, 2009. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol, 10(9):623-635. ![]() [154]SantinY, FormosoK, HaidarF, et al., 2023. Inhalation of acidic nanoparticles prevents doxorubicin cardiotoxicity through improvement of lysosomal function. Theranostics, 13(15):5435-5451. ![]() [155]SardielloM, PalmieriM, Di RonzaA, et al., 2009. A gene network regulating lysosomal biogenesis and function. Science, 325(5939):473-477. ![]() [156]Schmauck-MedinaT, MolièreA, LautrupS, et al., 2022. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging, 14(16):6829-6839. ![]() [157]SchützmannMP, HaseckeF, BachmannS, et al., 2021. Endo-lysosomal Aβ concentration and pH trigger formation of Aβ oligomers that potently induce Tau missorting. Nat Commun, 12:4634. ![]() [158]SeoBM, MiuraM, GronthosS, et al., 2004. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429):149-155. ![]() [159]SettembreC, PereraRM, 2024. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol, 25(3):223-245. ![]() [160]SettembreC, de CegliR, MansuetoG, et al., 2013. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol, 15(6):647-658. ![]() [161]ShaoBZ, HanBZ, ZengYX, et al., 2016. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin, 37(2):150-156. ![]() [162]ShenYR, XiaoYQ, ZhangS, et al., 2020. Fe3O4 nanoparticles attenuated Salmonella infection in chicken liver through reactive oxygen and autophagy via PI3K/Akt/mTOR signaling. Front Physiol, 10:1580. ![]() [163]ShimobayashiM, HallMN, 2014. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol, 15(3):155-162. ![]() [164]SimeoneL, MangiapiaG, IraceC, et al., 2011. Nucleolipid nanovectors as molecular carriers for potential applications in drug delivery. Mol BioSyst, 7(11):3075-3086. ![]() [165]SongWS, LeeSS, SaviniM, et al., 2014. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano, 8(10):10328-10342. ![]() [166]SunYN, LiMJ, ZhaoDF, et al., 2020. Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans. eLife, 9:e55745. ![]() [167]Swastika, ChaturvediS, KaulA, et al., 2019. Evaluation of BBB permeable nucleolipid (NLDPU): a di-C15-ketalised palmitone appended uridine as neuro-tracer for SPECT. Int J Pharm, 565:269-282. ![]() [168]TisiA, FlatiV, MonacheSD, et al., 2020. Nanoceria particles are an eligible candidate to prevent age-related macular degeneration by inhibiting retinal pigment epithelium cell death and autophagy alterations. Cells, 9(7):1617. ![]() [169]TrudeauKM, ColbyAH, ZengJL, et al., 2016. Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity. J Cell Biol, 214(1):25-34. ![]() [170]TuHY, YuanBS, HouXO, et al., 2021. α-Synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson’s disease. Aging Cell, 20(12):e13522. ![]() [171]UenoT, KomatsuM, 2017. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol, 14(3):170-184. ![]() [172]van TielFH, BoereWA, HarmsenT, et al., 1985. Determination of inhibitory concentrations of antiviral agents in cell culture by use of an enzyme immunoassay with virus-specific, peroxidase-labeled monoclonal antibodies. Antimicrob Agents Chemother, 27(5):802-805. ![]() [173]VeverováK, LaczóJ, KatonováA, et al., 2024. Alterations of human CSF and serum-based mitophagy biomarkers in the continuum of Alzheimer disease. Autophagy, 20(8):1868-1878. ![]() [174]WallingsRL, HumbleSW, WardME, et al., 2019. Lysosomal dysfunction at the centre of Parkinson’s disease and frontotemporal dementia/amyotrophic lateral sclerosis. Trends Neurosci, 42(12):899-912. ![]() [175]WanHY, ChenJL, ZhuXZ, et al., 2018. Titania-coated gold nano-bipyramids for blocking autophagy flux and sensitizing cancer cells to proteasome inhibitor-induced death. Adv Sci, 5(3):1700585. ![]() [176]WangL, WangZJ, LiXM, et al., 2018. Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. Nano Res, 11(5):2746-2755. ![]() [177]WangQ, WangY, LiSP, et al., 2023. PACAP–Sirtuin3 alleviates cognitive impairment through autophagy in Alzheimer’s disease. Alzheimers Res Ther, 15:184. ![]() [178]WangY, WuQ, AnandBG, et al., 2020. Significance of cytosolic cathepsin D in Alzheimer’s disease pathology: protective cellular effects of PLGA nanoparticles against β-amyloid-toxicity. Neuropathol Appl Neurobiol, 46(7):686-706. ![]() [179]WeiPF, ZhangL, NethiSK, et al., 2014. Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods. Biomaterials, 35(3):899-907. ![]() [180]WeiPF, JinPP, BaruiAK, et al., 2015. Differential ERK activation during autophagy induced by europium hydroxide nanorods and trehalose: maximum clearance of huntingtin aggregates through combined treatment. Biomaterials, 73:160-174. ![]() [181]WengQJ, SunH, FangCY, et al., 2021. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat Commun, 12:1436. ![]() [182]WilsonN, KatauraT, KorsgenME, et al., 2023. The autophagy–NAD axis in longevity and disease. Trends Cell Biol, 33(9):788-802. ![]() [183]WuLK, YangF, XueYJ, et al., 2023. The biological functions of europium-containing biomaterials: a systematic review. Mater Today Bio, 19:100595. ![]() [184]XieCL, ZhuangXX, NiuZM, et al., 2022. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng, 6:76-93. ![]() [185]XieYX, JiangJN, TangQY, et al., 2020. Iron oxide nanoparticles as autophagy intervention agents suppress hepatoma growth by enhancing tumoricidal autophagy. Adv Sci, 7(16):1903323. ![]() [186]XuST, YangP, QianK, et al., 2022. Modulating autophagic flux via ROS-responsive targeted micelles to restore neuronal proteostasis in Alzheimer’s disease. Bioact Mater, 11:300-316. ![]() [187]XueX, WangLR, SatoY, et al., 2014. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett, 14(9):5110-5117. ![]() [188]YanS, ZhengX, LinYQ, et al., 2023. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington’s disease. Nat Biom Eng, 7(5):629-646. ![]() [189]YangL, LiP, FuSN, et al., 2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab, 11(6):467-478. ![]() [190]YangZX, GeCC, LiuJJ, et al., 2015. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale, 7(44):18725-18737. ![]() [191]YinY, TianBM, LiX, et al., 2022. Gold nanoparticles targeting the autophagy–lysosome system to combat the inflammation-compromised osteogenic potential of periodontal ligament stem cells: from mechanism to therapy. Biomaterials, 288:121743. ![]() [192]ZengJL, MartinA, HanX, et al., 2019a. Biodegradable PLGA nanoparticles restore lysosomal acidity and protect neural PC-12 cells against mitochondrial toxicity. Ind Eng Chem Res, 58(31):13910-13917. ![]() [193]ZengJL, ShirihaiOS, GrinstaffMW, 2019b. Degradable nanoparticles restore lysosomal pH and autophagic flux in lipotoxic pancreatic beta cells. Adv Healthcare Mater, 8(12):1801511. ![]() [194]ZengJL, Acin-PerezR, AssaliEA, et al., 2023. Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease. Nat Commun, 14:2573. ![]() [195]ZhangC, RenJ, HeJ, et al., 2018. Long-term monitoring of tumor-related autophagy in vivo by Fe3O4-NO· nanoparticles. Biomaterials, 179:186-198. ![]() [196]ZhangJ, QinX, WangB, et al., 2017. Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death Dis, 8(7):e2954. ![]() [197]ZhangJQ, ZhuSS, JinPP, et al., 2020. Graphene oxide improves postoperative cognitive dysfunction by maximally alleviating amyloid beta burden in mice. Theranostics, 10(26):11908-11920. ![]() [198]ZhangK, ZhuSO, LiJM, et al., 2021. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson’s disease. Acta Pharm Sin B, 11(10):3015-3034. ![]() [199]ZhangW, XuCC, SunJC, et al., 2022. Impairment of the autophagy–lysosomal pathway in Alzheimer’s diseases: pathogenic mechanisms and therapeutic potential. Acta Pharm Sin B, 12(3):1019-1040. ![]() [200]ZhangXW, ZhuXX, TangDS, et al., 2023. Targeting autophagy in Alzheimer’s disease: animal models and mechanisms. Zool Res, 44(6):1132-1145. ![]() [201]ZhangXY, MisraSK, MoitraP, et al., 2023. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy, 19(3):886-903. ![]() [202]ZhangZQ, YuePF, LuTQ, et al., 2021. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol, 14:79. ![]() [203]ZhaoJL, TianZM, ZhaoSJ, et al., 2023. Insights into the effect of catalytic intratumoral lactate depletion on metabolic reprogramming and immune activation for antitumoral activity. Adv Sci, 10(4):2204808. ![]() [204]ZhaoYG, CodognoP, ZhangH, 2021. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol, 22(11):733-750. ![]() [205]ZhouHL, GongXQ, LinHY, et al., 2018. Gold nanoparticles impair autophagy flux through shape-dependent endocytosis and lysosomal dysfunction. J Mater Chem B, 6(48):8127-8136. ![]() [206]ZhuL, WuGJ, YangXY, et al., 2019. Low density lipoprotein mimics insulin action on autophagy and glucose uptake in endothelial cells. Sci Rep, 9:3020. ![]() [207]ZhuQ, SongJX, ChenJY, et al., 2023. Corynoxine B targets at HMGB1/2 to enhance autophagy for α-synuclein clearance in fly and rodent models of Parkinson’s disease. Acta Pharm Sin B, 13(6):2701-2714. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>