
CLC number:
On-line Access: 2025-01-14
Received: 2024-04-15
Revision Accepted: 2024-07-29
Crosschecked: 2024-09-04
Cited: 0
Clicked: 2393
Ru HE, Hongyi JIANG, Chengchi ZHANG, Yuan CHEN, Wenshun LIU, Xinyue DENG, Xiaozheng ZHU, Yunye LIU, Chuanming ZHENG, Yining ZHANG, Chengying SHAO, Yanting DUAN, Jiajie XU. CXCL16 promotes proliferation of head and neck squamous cell carcinoma by regulating GPX1-mediated antioxidant levels[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2400192 @article{title="CXCL16 promotes proliferation of head and neck squamous cell carcinoma by regulating GPX1-mediated antioxidant levels", %0 Journal Article TY - JOUR
CXCL16通过调节GPX1介导的抗氧化水平促进头颈部鳞状细胞癌增殖1浙江省人民医院, 杭州医学院附属人民医院, 耳鼻咽喉头颈外科中心, 头颈外科, 中国杭州市, 310014 2浙江工业大学, 生物工程学院, 中国杭州市, 310014 3浙江省人民医院, 杭州医学院附属人民医院, 病理科, 肿瘤中心, 中国杭州市, 310014 4锦州医科大学研究生培养基地(浙江省人民医院), 中国锦州市, 121000 5浙江中医药大学第二临床医学院, 中国杭州市, 310053 6浙江省头颈肿瘤精准医学研究重点实验室, 中国杭州市, 310014 摘要:大量研究表明,CXC基序趋化因子配体16(CXCL16)在癌症中的高表达与预后不良以及肿瘤细胞的增殖、迁移和侵袭有关。虽然CXCL16可以作为肿瘤生物标志物,但其调节头颈部鳞状细胞癌(HNSCC)的潜在机制尚不清楚。在本研究中,我们旨在研究CXCL16在HNSCC中的表达,并揭示其潜在的生物学机制。我们在癌症基因组图谱(TCGA)数据库、本中心医院HNSCC患者的组织样本和HNSCC细胞系中均检测到CXCL16的高表达。实验结果表明,CXCL16敲低可抑制HNSCC细胞的增殖、迁移和侵袭。转录组测序显示,CXCL16可能通过调节谷胱甘肽过氧化物酶1(GPX1)的抗氧化途径影响HNSCC细胞生长。si-CXCL16细胞中活性氧(ROS)的水平升高,可能与抑制细胞增殖、迁移和侵袭有关。此外,与si-CXCL16组相比,si-CXCL16和GPX1抑制剂Eldecalcitol(ED-71)协同作用组能显著抑制HNSCC细胞的生长。综上,CXCL16可通过调节GPX1介导的抗氧化途径促进HNSCC细胞的发展。因此,靶向细胞CXCL16表达可能是治疗HNSCC的一个候选策略。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbelS, HundhausenC, MentleinR, et al., 2004. The transmembrane CXC-chemokine ligand 16 is induced by IFN-γ and TNF-α and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol, 172(10):6362-6372. ![]() [2]BeckerTM, JuvikJA, 2016. The role of glucosinolate hydrolysis products from brassica vegetable consumption in inducing antioxidant activity and reducing cancer incidence. Diseases, 4(2):22. ![]() [3]BrayF, FerlayJ, SoerjomataramI, et al., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6):394-424. ![]() [4]BrocksteinB, HarafDJ, RademakerAW, et al., 2004. Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience. Ann Oncol, 15(8):1179-1186. ![]() [5]Chalabi-DcharM, Cassant-SourdyS, DulucC, et al., 2015. Loss of somatostatin receptor subtype 2 promotes growth of KRAS-induced pancreatic tumors in mice by activating PI3K signaling and overexpression of CXCL16. Gastroenterology, 148(7):1452-1465. ![]() [6]ChoSW, KimYA, SunHJ, et al., 2016. CXCL16 signaling mediated macrophage effects on tumor invasion of papillary thyroid carcinoma. Endocr Relat Cancer, 23(2):113-124. ![]() [7]ColladoA, MarquesP, EscuderoP, et al., 2018. Functional role of endothelial CXCL16/CXCR6-platelet-leucocyte axis in angiotensin II-associated metabolic disorders. Cardiovasc Res, 114(13):1764-1775. ![]() [8]DequanterD, DokR, KoolenL, et al., 2017. Prognostic significance of glutathione peroxidase levels (GPx1) in head and neck cancers. Front Oncol, 7:84. ![]() [9]FanS, TangQL, LinYJ, et al., 2011. A review of clinical and histological parameters associated with contralateral neck metastases in oral squamous cell carcinoma. Int J Oral Sci, 3(4):180-191. ![]() [10]GaoZR, LingXY, ShiCY, et al., 2022. Tumor immune checkpoints and their associated inhibitors. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):823-843. ![]() [11]GriffithJW, SokolCL, LusterAD, 2014. Chemokines and chemo ![]() [12]kine receptors: positioning cells for host defense and immunity. Annu Rev Immunol, 32:659-702. ![]() [13]GuanJZ, XuX, QiuG, et al., 2023. Cellular hierarchy framework based on single-cell/multi-patient sample sequencing reveals metabolic biomarker PYGL as a therapeutic target for HNSCC. J Exp Clin Cancer Res, 42:162. ![]() [14]HanJ, FuRJ, ChenC, et al., 2021. CXCL16 promotes gastric cancer tumorigenesis via ADAM10-dependent CXCL16/CXCR6 axis and activates Akt and MAPK signaling pathways. Int J Biol Sci, 17(11):2841-2852. ![]() [15]HattermannK, GebhardtH, KrossaS, et al., 2016. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling. eLife, 5:e10820. ![]() [16]HsiehCY, LinCC, HuangYW, et al., 2022. Macrophage secretory IL-1β promotes docetaxel resistance in head and neck squamous carcinoma via SOD2/CAT-ICAM1 signaling. JCI Insight, 7(23):e157285. ![]() [17]HuWD, LiuY, ZhouWH, et al., 2014. CXCL16 and CXCR6 are coexpressed in human lung cancer in vivo and mediate the invasion of lung cancer cell lines in vitro. PLoS ONE, 9(6):e99056. ![]() [18]HuangC, DingGY, GuCY, et al., 2012. Decreased selenium-binding protein 1 enhances glutathione peroxidase 1 activity and downregulates HIF-1α to promote hepatocellular carcinoma invasiveness. Clin Cancer Res, 18(11):3042-3053. ![]() [19]IzquierdoMC, Martin-ClearyC, Fernandez-FernandezB, et al., 2014. CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev, 25(3):317-325. ![]() [20]JiangYY, GuoHY, TongT, et al., 2022. lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Ther, 30(1):448-467. ![]() [21]KarakiS, BlancC, TranT, et al., 2021. CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T-cell recruitment in head and neck and lung tumors. J Immunother Cancer, 9(3):e001948. ![]() [22]KassabRB, ElhenawyAA, AbdulrahmanTheyab, et al., 2023. Modulation of inflammatory, oxidative, and apoptotic stresses mediates the renoprotective effect of daidzein against glycerol-induced acute kidney injury in rats. Environ Sci Pollut Res Int, 30(56):119016-119033. ![]() [23]KhanP, FatimaM, KhanMA, et al., 2022. Emerging role of chemokines in small cell lung cancer: road signs for metastasis, heterogeneity, and immune response. Semin Cancer Biol, 87:117-126. ![]() [24]KimMJ, SunHJ, SongYS, et al., 2019. CXCL16 positively correlated with M2-macrophage infiltration, enhanced angiogenesis, and poor prognosis in thyroid cancer. Sci Rep, 9:13288. ![]() [25]KorbeckiJ, Bajdak-RusinekK, KupnickaP, et al., 2021. The role of CXCL16 in the pathogenesis of cancer and other diseases. Int J Mol Sci, 22(7):3490. ![]() [26]LeiFJ, ChiangJY, ChangHJ, et al., 2023. Cellular and exosomal GPx1 are essential for controlling hydrogen peroxide balance and alleviating oxidative stress in hypoxic glioblastoma. Redox Biol, 65:102831. ![]() [27]LeporeF, D'AlessandroG, AntonangeliF, et al., 2018. CXCL16/CXCR6 axis drives microglia/macrophages phenotype in physiological conditions and plays a crucial role in glioma. Front Immunol, 9:2750. ![]() [28]LiuH, YangZJ, LuWP, et al., 2020. Chemokines and chemokine receptors: a new strategy for breast cancer therapy. Cancer Med, 9(11):3786-3799. ![]() [29]LiuHY, WangGQ, WuT, et al., 2022. Efficacy and safety of eldecalcitol for osteoporosis: a meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne), 13:854439. ![]() [30]LivakKJ, SchmittgenTD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4):402-408. ![]() [31]LuYP, KouYY, GaoY, et al., 2023. Eldecalcitol inhibits the progression of oral cancer by suppressing the expression of GPx-1. Oral Dis, 29(2):615-627. ![]() [32]MaYS, XuX, LuoM, 2017. CXCR6 promotes tumor cell proliferation and metastasis in osteosarcoma through the Akt pathway. Cell Immunol, 311:80-85. ![]() [33]MatloubianM, DavidA, EngelS, et al., 2000. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol, 1(4):298-304. ![]() [34]MatsushitaK, ToiyamaY, TanakaK, et al., 2012. Soluble CXCL16 in preoperative serum is a novel prognostic marker and predicts recurrence of liver metastases in colorectal cancer patients. Ann Surg Oncol, 19(Suppl 3):518-527. ![]() [35]MeiXY, QiDS, ZhangT, et al., 2020. Inhibiting MARSs reduces hyperhomocysteinemia-associated neural tube and congenital heart defects. EMBO Mol Med, 12(3):e9469. ![]() [36]MeiZ, HuangJW, QiaoB, et al., 2020. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. Int J Oral Sci, 12:16. ![]() [37]MoloneyJN, CotterTG, 2018. ROS signalling in the biology of cancer. Semin Cell Dev Biol, 80:50-64. ![]() [38]MoreiraD, SampathS, WonH, et al., 2021. Myeloid cell-targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell-mediated immunity. J Clin Invest, 131(2):e137001. ![]() [39]PeiJ, PanXY, WeiGH, et al., 2023. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol, 14:1147414. ![]() [40]RichardsenE, NessN, Melbø-JørgensenC, et al., 2015. The prognostic significance of CXCL16 and its receptor C-X-C chemokine receptor 6 in prostate cancer. Am J Pathol, 185(10):2722-2730. ![]() [41]RuffinAT, LiH, VujanovicL, et al., 2023. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer, 23(3):173-188. ![]() [42]Saddawi-KonefkaR, O'FarrellA, FarajiF, et al., 2022. Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. Nat Commun, 13:4298. ![]() [43]SiegelRL, MillerKD, JemalA, 2020. Cancer statistics, 2020. CA Cancer J Clin, 70(1):7-30. ![]() [44]SiuLL, EvenC, MesíaR, et al., 2019. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol, 5(2):195-203. ![]() [45]TangYC, HsiaoJR, JiangSS, et al., 2021. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics, 11(11):5232-5247. ![]() [46]TsaiCF, ChenGW, ChenYC, et al., 2022. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients, 14(1):67. ![]() [47]WuW, GengZX, BaiHR, et al., 2021. Ammonium ferric citrate induced ferroptosis in non-small-cell lung carcinoma through the inhibition of GPX4-GSS/GSR-GGT axis activity. Int J Med Sci, 18(8):1899-1909. ![]() [48]ZhangGS, WangQ, QiXL, et al., 2022. OShnscc: a novel user-friendly online survival analysis tool for head and neck squamous cell carcinoma based on RNA expression profiles and long-term survival information. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(3):249-257. ![]() [49]ZhaoYJ, WangH, ZhouJD, et al., 2022. Glutathione peroxidase GPX1 and its dichotomous roles in cancer. Cancers (Basel), 14(10):2560. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||



Open peer comments: Debate/Discuss/Question/Opinion
<1>