
CLC number:
On-line Access: 2025-10-21
Received: 2025-03-02
Revision Accepted: 2025-08-03
Crosschecked: 2025-10-21
Cited: 0
Clicked: 1669
Citations: Bibtex RefMan EndNote GB/T7714
Hongfu LI, Yaxin HU, Siqi CHEN, Yusufjon GAFFOROV, Mengcen WANG, Xiaoyu LIU. Harnessing chemical communication in plant–microbiome and intra-microbiome interactions[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2500099 @article{title="Harnessing chemical communication in plant–microbiome and intra-microbiome interactions", %0 Journal Article TY - JOUR
植物-微生物组和微生物组内相互作用中化学通讯的应用1浙江大学农业与生物技术学院,中国杭州市,310058 2水稻生物育种全国重点实验室,农业农村部作物病虫分子生物学重点实验室,浙江大学,中国杭州市,310058 3浙江省作物病虫生物学重点实验室,浙江省作物病虫绿色防控技术工程研究中心,浙江大学农药与环境毒理研究所,中国杭州市,310058 4新乌兹别克斯坦大学中亚发展研究中心,塔什干市,100007,乌兹别克斯坦 5北海道大学农学研究院农业科学前沿全球教育项目,札幌市,060-0808,日本 6澳大利亚植物能量生物学卓越研究中心,西澳大利亚大学,珀斯市,西澳大利亚州6430,澳大利亚 摘要:植物-微生物群以及微生物群内的化学通讯编织出一个复杂的网络,对生态系统稳定性和农业生产力具有重要影响。这种非接触式的相互作用由小分子信号驱动,这些信号协调交互对话的动态并促进有益的互作关系。植物利用这些信号来区分病原体与有益微生物,动态调节免疫反应,并分泌根系外泌物以招募有益微生物群;而微生物则反过来影响植物的养分获取和抗逆能力。这种双向化学对话支撑着养分循环、共同进化、微生物群组装以及植物的抗性。然而,目前在验证参与植物-微生物互作的关键分子方面仍存在知识空白。解析化学通讯需要整合多组学预测关键信息,利用基因组编辑和点击化学来验证生物分子的功能,并借助人工智能(AI)模型来提升解析的分辨率和准确性。本综述旨在推动对化学通讯的理解,并为农业应对粮食安全与气候挑战提供理论支持。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AshrafiR, BruneauxM, SundbergLR, et al., 2017. Application of high resolution melting assay (HRM) to study temperature-dependent intraspecific competition in a pathogenic bacterium. Sci Rep, 7:980. ![]() [2]AtkinsonNJ, LilleyCJ, UrwinPE, 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol, 162(4):2028-2041. ![]() [3]BaiWH, LiC, LiW, et al., 2024. Machine learning assists prediction of genes responsible for plant specialized metabolite biosynthesis by integrating multi-omics data. BMC Genomics, 25:418. ![]() [4]BerrocalA, NavarreteJ, OviedoC, et al., 2012. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. J Appl Microbiol, 113(1):126-134. ![]() [5]BishnoiP, SarohaB, KumarS, et al., 2025. Click Chemistry: an overview and recent updates in the medicinal attributes of click-derived heterocycles. Mol Divers, in press. ![]() [6]BordensteinSR, TheisKR, 2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol, 13(8):e1002226. ![]() [7]BrackmanG, CoenyeT, 2015. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des, 21(1):5-11. ![]() [8]CallawayE, 2024. ‘ChatGPT for CRISPR’ creates new gene-editing tools. Nature, 629(8011):272-272. ![]() [9]CallawayE, 2025. Biggest-ever AI biology model writes DNA on demand. Nature, 638(8052):868-869. ![]() [10]Cembrowska-LechD, KrzemińskaA, MillerT, et al., 2023. An integrated multi-omics and artificial intelligence framework for advance plant phenotyping in horticulture. Biology, 12(10):1298. ![]() [11]ChenDM, LiRN, ShaoQ, et al., 2023. Design and synthesis of novel near-infrared fluorescence probes based on an open conformation of a cytochrome P450 1B1 complex for molecular imaging of colorectal tumors. J Med Chem, 66(23):16032-16050. ![]() [12]ChenMM, KopittkePM, ZhaoFJ, et al., 2024. Applications and opportunities of click chemistry in plant science. Trends Plant Sci, 29(2):167-178. ![]() [13]ChenSS, LuXQ, FangHD, et al., 2024. Early surveillance of rice bakanae disease using deep learning and hyperspectral imaging. aBIOTECH, 5(3):281-297. ![]() [14]ChenY, WangJ, YangN, et al., 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun, 9:3429. ![]() [15]ChengR, KeTL, GuiFZ, et al., 2025. drSMALL: database for disease resistance-shaping small molecules derived from the plant microbiome. Crop Health, 3:2. ![]() [16]DullahS, HazarikaDJ, ParveenA, et al., 2021. Fungal interactions induce changes in hyphal morphology and enzyme production. Mycology, 12(4):279-295. ![]() [17]FanXY, MatsumotoH, XuHR, et al., 2024. Aspergillus cvjetkovicii protects against phytopathogens through interspecies chemical signalling in the phyllosphere. Nat Microbiol, 9(11):2862-2876. ![]() [18]GandomiAH, ChenF, AbualigahL, 2023. Big data analytics using artificial intelligence. Electronics, 12(4):957. ![]() [19]GaoCX, 2021. Genome engineering for crop improvement and future agriculture. Cell, 184(6):1621-1635. ![]() [20]GigerGH, ErnstC, RichterI, et al., 2024. Inducing novel endosymbioses by implanting bacteria in fungi. Nature, 635(8038):415-422. ![]() [21]GongAD, WuNN, KongXW, et al., 2019. Inhibitory effect of volatiles emitted from Alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Front Microbiol, 10:1419. ![]() [22]GuY, TianJJ, ZhangY, et al., 2021. Dissecting signal molecule AI-2 mediated biofilm formation and environmental tolerance in Lactobacillus plantarum. J Biosci Bioeng, 131(2):153-160. ![]() [23]HacquardS, MartinFM, 2024. The chemical language of plant–microbe–microbe associations: an introduction to a virtual issue. New Phytol, 244(3):739-742. ![]() [24]HanifMS, TayyabM, BailloEH, et al., 2024. Plant microbiome technology for sustainable agriculture. Front Microbiol, 15:1500260. ![]() [25]HibbingME, FuquaC, ParsekMR, et al., 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol, 8(1):15-25. ![]() [26]HoganDA, VikÅ, KolterR, 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol, 54(5):1212-1223. ![]() [27]HuTT, FangHD, PanQQ, et al., 2024. Seed microbiome-mediated herbicide resistance evolution in weeds. New Phytol, 242(2):333-343. ![]() [28]HussainM, ZahraN, LangT, et al., 2023. Integrating nanotechnology with plant microbiome for next-generation crop health. Plant Physiol Biochem, 196:703-711. ![]() [29]JinPF, WangY, TanZ, et al., 2020. Antibacterial activity and rice-induced resistance, mediated by C15 surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae. Pestic Biochem Physiol, 169:104669. ![]() [30]JonesJDG, StaskawiczBJ, DanglJL, 2024. The plant immune system: from discovery to deployment. Cell, 187(9):2095-2116. ![]() [31]JumperJ, EvansR, PritzelA, et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583-589. ![]() [32]KatoH, NemotoK, ShimizuM, et al., 2022. Recognition of pathogen-derived sphingolipids in Arabidopsis. Science, 376(6595):857-860. ![]() [33]KimothoRN, MainaS, 2024. Unraveling plant–microbe interactions: can integrated omics approaches offer concrete answers? J Exp Bot, 75(5):1289-1313. ![]() [34]KolbHC, FinnMG, SharplessKB, 2001. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed, 40(11):2004-2021. ![]() [35]KuYS, LiaoYJ, ChiouSP, et al., 2024. From trade-off to synergy: microbial insights into enhancing plant growth and immunity. Plant Biotechnol J, 22(9):2461-2471. ![]() [36]LaschP, BeyerW, BoschA, et al., 2025. A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria. Sci Data, 12:187. ![]() [37]LeachJE, TriplettLR, ArguesoCT, et al., 2017. Communication in the phytobiome. Cell, 169(4):587-596. ![]() [38]LiBS, SunC, LiJY, et al., 2024. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet, 25(9):603-622. ![]() [39]LiJB, WuPF, CaoZT, et al., 2024. Machine learning-based prediction models to guide the selection of Cas9 variants for efficient gene editing. Cell Rep, 43(2):113765. ![]() [40]LiJC, JiangXF, 2021. Mol-BERT: an effective molecular representation with BERT for molecular property prediction. Wireless Commun Mobile Comput, 2021:7181815. ![]() [41]LiRY, ChenSS, MatsumotoH, et al., 2023. Predicting rice diseases using advanced technologies at different scales: present status and future perspectives. aBIOTECH, 4(4):359-371. ![]() [42]LiuXY, MatsumotoH, LvTX, et al., 2023. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease. Nat Microbiol, 8(8):1419-1433. ![]() [43]LotterhosKE, 2024. Principles in experimental design for evaluating genomic forecasts. Methods Ecol Evol, 15(9):1466-1482. ![]() [44]LuoCH, HeYJ, ChenYP, 2025. Rhizosphere microbiome regulation: unlocking the potential for plant growth. Curr Res Microb Sci, 8:100322. ![]() [45]LuoF, YuZJ, ZhouQ, et al., 2022. Multi-omics-based discovery of plant signaling molecules. Metabolites, 12(1):76. ![]() [46]LvTX, ZhanCF, PanQQ, et al., 2023. Plant pathogenesis: toward multidimensional understanding of the microbiome. iMeta, 2(3):e129. ![]() [47]MaierhabaY, MomjianC, MankelD, et al., 2024. Dual-BONCAT reveals distinct day- and night-active microbial populations in salt marsh sediments. bioRxiv, preprint. ![]() [48]MatsumotoH, FanXY, WangY, et al., 2021. Bacterial seed endophyte shapes disease resistance in rice. Nat Plants, 7(1):60-72. ![]() [49]MatsumotoH, QianY, FanXY, et al., 2022. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. Fundam Res, 2(2):198-207. ![]() [50]MidziJ, JefferyDW, BaumannU, et al., 2022. Stress-induced volatile emissions and signalling in inter-plant communication. Plants, 11(19):2566. ![]() [51]MorimotoK, KrahnD, KaschaniF, et al., 2022. Broad-range metalloprotease profiling in plants uncovers immunity provided by defence-related metalloenzyme. New Phytol, 235(3):1287-1301. ![]() [52]MullerE, ShiryanI, BorensteinE, 2024. Multi-omic integration of microbiome data for identifying disease-associated modules. Nat Commun, 15:2621. ![]() [53]PanQQ, LvTX, XuHR, et al., 2024. Gut pathobiome mediates behavioral and developmental disorders in biotoxin-exposed amphibians. Environ Sci Ecotechnol, 21:100415. ![]() [54]PantigosoHA, NewbergerD, VivancoJM, 2022. The rhizosphere microbiome: plant–microbial interactions for resource acquisition. J Appl Microbiol, 133(5):2864-2876. ![]() [55]PaquetteSJ, ZaheerR, StanfordK, et al., 2018. Competition among Escherichia coli strains for space and resources. Vet Sci, 5(4):93. ![]() [56]ReesHA, MinellaAC, BurnettCA, et al., 2021. CRISPR-derived genome editing therapies: progress from bench to bedside. Mol Ther, 29(11):3125-3139. ![]() [57]RooneyLM, AmosWB, HoskissonPA, et al., 2020. Intra-colony channels in E. coli function as a nutrient uptake system. ISME J, 14(10):2461-2473. ![]() [58]SharmaM, SudheerS, UsmaniZ, et al., 2020. Deciphering the omics of plant–microbe interaction: perspectives and new insights. Curr Genomics, 21(5):343-362. ![]() [59]SlettenEM, BertozziCR, 2011. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res, 44(9):666-676. ![]() [60]SrivastavaAK, SinghRD, PandeyGK, et al., 2025. Unravelling the molecular dialogue of beneficial microbe–plant interactions. Plant Cell Environ, 48(4):2534-2548. ![]() [61]StukenbrockE, GurrS, 2023. Address the growing urgency of fungal disease in crops. Nature, 617(7959):31-34. ![]() [62]SuP, KangHX, PengQZ, et al., 2024. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat Commun, 15:23. ![]() [63]TanXH, WangDP, ZhangXW, et al., 2025. A pair of LysM receptors mediates symbiosis and immunity discrimination in Marchantia. Cell, 188(5):1330-1348.e27. ![]() [64]TariqA, GuoSZ, FarhatF, et al., 2025. Engineering synthetic microbial communities: diversity and applications in soil for plant resilience. Agronomy, 15(3):513. ![]() [65]TrivediP, LeachJE, TringeSG, et al., 2020. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol, 18(11):607-621. ![]() [66]UgaldeU, 2006. Autoregulatory signals in mycelial fungi. In: Kües U, Fischer R (Eds.), Growth, Differentiation and Sexuality, 2nd Ed. Springer, Berlin, Heidelberg, p.203-213. ![]() [67]WangBY, ZhaoAS, NovickRP, et al., 2015. Key driving forces in the biosynthesis of autoinducing peptides required for staphylococcal virulence. Proc Natl Acad Sci USA, 112(34):10679-10684. ![]() [68]WangG, RanHM, FanJ, et al., 2022. Fungal-fungal cocultivation leads to widespread secondary metabolite alteration requiring the partial loss-of-function VeA1 protein. Sci Adv, 8(17):eabo6094. ![]() [69]WangMC, CernavaT, 2020. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ Sci Ecotechnol, 4:100061. ![]() [70]WangMC, CernavaT, 2023. Soterobionts: disease-preventing microorganisms and proposed strategies to facilitate their discovery. Curr Opin Microbiol, 75:102349. ![]() [71]WangPP, Lehti-ShiuMD, LotreckS, et al., 2024. Prediction of plant complex traits via integration of multi-omics data. Nat Commun, 15:6856. ![]() [72]Weiland-BräuerN, 2021. Friends or foes—microbial interactions in nature. Biology, 10(6):496. ![]() [73]WeiningerD, 1988. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci, 28(1):31-36. ![]() [74]WhidbeyC, 2025. The right tool for the job: chemical biology and microbiome science. Cell Chem Biol, 32(1):83-97. ![]() [75]WuL, LuoYB, 2021. Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. Front Microbiol, 12:611413. ![]() [76]XuP, FanXY, MaoYX, et al., 2022. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J Adv Res, 39:49-60. ![]() [77]XuP, StirlingE, XieHT, et al., 2023. Continental scale deciphering of microbiome networks untangles the phyllosphere homeostasis in tea plant. J Adv Res, 44:13-22. ![]() [78]ZhanCF, WangMC, 2024. Disease resistance through M genes. Nat Plants, 10(3):352-353. ![]() [79]ZhanCF, MatsumotoH, LiuYF, et al., 2022. Pathways to engineering the phyllosphere microbiome for sustainable crop production. Nat Food, 3(12):997-1004. ![]() [80]ZhangGS, ZhangF, DingG, et al., 2012. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME J, 6(7):1336-1344. ![]() [81]ZhangSB, MukherjiR, ChowdhuryS, et al., 2021. Lipopeptide-mediated bacterial interaction enables cooperative predator defense. Proc Natl Acad Sci USA, 118(6):e2013759118. ![]() [82]ZhangXK, LiGJ, ZhangZQ, et al., 2023. 3-Octanol controls gray mold on postharvest fruit by inducing autophagy of Botrytis cinerea. Postharvest Biol Technol, 205:112525. ![]() [83]ZhaoL, WalkowiakS, FernandoWGD, 2023. Artificial intelligence: a promising tool in exploring the phytomicrobiome in managing disease and promoting plant health. Plants, 12(9):1852. ![]() [84]ZhouYQ, WangHK, XuSD, et al., 2022. Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions. Stress Biol, 2:22. ![]() [85]ZhuYL, FangYP, HuangWZ, et al., 2024. AI-driven precision subcellular navigation with fluorescent probes. J Mater Chem B, 12(43):11054-11062. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>