CLC number: TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-06-16
Cited: 2
Clicked: 8906
Farnaz Sabahi, M.-R. Akbarzadeh-T. A framework for analysis of extended fuzzy logic[J]. Journal of Zhejiang University Science C,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.C1300217 @article{title="A framework for analysis of extended fuzzy logic", %0 Journal Article TY - JOUR
一种分析扩展模糊逻辑的架构研究目的:模糊逻辑的结论蕴含可证明为有效这一必要条件,而许多实际应用并不满足此条件。扩展模糊逻辑是在模糊逻辑基础上考虑有效性以满足此条件。目前扩展模糊逻辑理论描述相关工作很少。本文提出一种分析扩展模糊逻辑的架构,给出基于扩展模糊逻辑推理的数学描述。创新要点:首次给出基于扩展模糊逻辑推理的数学描述。引入A-基粒(A-granule)的概念---A-基粒是保留f变换(f-transform)全部特性的最小基粒。 方法提亮:通过定理证明以及提出A-基粒概念,详细介绍了扩展模糊逻辑的关键特性。 重要结论:在扩展模糊逻辑中,不完整信息下的解接近完整信息下的解。在相同背景下,两种情形下的解与其有效性同构。由本文给出的扩展模糊逻辑理论描述可以明确,完整信息并非解决问题之必需,不过信息越充分,越能得到确切解。基于扩展模糊逻辑的推理,计算量小,速度快。 扩展模糊逻辑;模糊逻辑;f变换;S解;有效性 Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Aliev, R.A., Alizadeh, A.V., Guirimov, B.G., 2010. Unpre-cisiated information-based approach to decision making with imperfect information. Proc. 9th Int. Conf. on Application of Fuzzy Systems and Soft Computing, p.387-397. ![]() [2]Dubois, D., Prade, H., 1996. What are fuzzy rules and how to use them. Fuzzy Sets Syst., 84(2):169-185. ![]() [3]Dubois, D., Prade, H., 2012. Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst., 192:3-24. ![]() [4]Hájek, P., 2006. What is mathematical fuzzy logic. Fuzzy Sets Syst., 157(5):597-603. ![]() [5]Imran, B.M., Beg, M.M.S., 2011. Elements of sketching with words. Int. J. Gran. Comput. Rough Sets Intell. Syst., 2(2):166-178. ![]() [6]Imran, B.M., Beg, M.M.S., 2012. Fuzzy identification of geometric shapes. In: Meghanathan, N., Chaki, N., Nagamalai, D. (Eds.), Advances in Computer Science and Information Technology. Springer Berlin Heidelberg, p.269-279. ![]() [7]Niskanen, V.A., 2009. Application of Zadeh’s impossibility principle to approximate explanation. IFSA/EUSFLAT Conf., p.561-567. ![]() [8]Niskanen, V.A., 2010. A meta-level approach to approximate probability. In: Setchi, R., Jordanov, I., Howlett, R.J., et al. (Eds.), Knowledge-based and Intelligent Information and Engineering Systems. Springer Berlin Heidelberg, p.116-123. ![]() [9]Niskanen, V.A., 2012. Prospects for applying fuzzy extended logic to scientific reasoning. In: Kantola, J., Karwowski, W. (Eds.), Knowledge Service Engineering Handbook. CRC Press, p.279-306. ![]() [10]Niskanen, V.A., 2013. On examination of medical data with approximate reasoning. In: Seising, R., Tabacchi, M.E. (Eds.), Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care. Springer Berlin Heidelberg, p.269-290. ![]() [11]Perfilieva, I., 2006. Fuzzy transforms: theory and applications. Fuzzy Sets Syst., 157(8):993-1023. ![]() [12]Raha, S., Ray, K.S., 1999. Reasoning with vague truth. Fuzzy Sets Syst., 105(3):385-399. ![]() [13]Sabahi, F., Akbarzadeh-T, M.R., 2013. A qualified descrip-tion of extended fuzzy logic. Inform. Sci., 244:60-74. ![]() [14]Sabahi, F., Akbarzadeh-T, M.R., 2014a. Comparative evaluation of risk factors in coronary heart disease based on fuzzy probability-validity modeling. ZUMS J., 22(91):73-83. ![]() [15]Sabahi, F., Akbarzadeh-T, M.R., 2014b. Introducing validity in fuzzy probability for judicial decision-making. Int. J. Approx. Reason., 55(6):1383-1403. ![]() [16]Tolosa, J.B., Guadarrama, S., 2010. Collecting fuzzy percep-tions from non-expert users. IEEE Int. Conf. on Fuzzy Systems, p.1-8. ![]() [17]Wilke, G., 2009. Approximate geometric reasoning with extended geographic objects. Proc. Workshop on Quality, Scale and Analysis Aspects of City Models, p.102-106. ![]() [18]Zadeh, L.A., 1965. Fuzzy sets. Inform. Contr., 8(3):338-353. ![]() [19]Zadeh, L.A., 1997. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst., 90(2):111-127. ![]() [20]Zadeh, L.A., 2009. Toward extended fuzzy logic—a first step. Fuzzy Sets Syst., 160(21):3175-3181. ![]() [21]Zadeh, L.A., 2010. Precisiation of Meaning—Toward Computation with Natural Language. Key Note on IRI, Las Vegas, Nevada. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>