CLC number: TP181
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-06-16
Cited: 10
Clicked: 10523
Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix[J]. Journal of Zhejiang University Science C,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.C1300264 @article{title="ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix", %0 Journal Article TY - JOUR
基于非线性支持向量机和遗传算法的移动ECG质量评估研究目的:为减少移动设备采集的ECG信号造成的误报警,避免远程心电监控中心的误诊和诊疗资源浪费,提高诊断准确率和效率,首先必须评估ECG信号质量。本文采用频域、时域相结合的ECG特征分析,结合非线性支持向量机(kernelsupportvectormachine, KSVM)和遗传算法,实现对ECG的质量分类。创新要点:运用频域和时域相结合的ECG特征分析。对具有易于识别特征(如导联脱落)的ECG信号,直接依据该特征得出分类结果;对依据简单特征无法评判的ECG信号,提取复杂时、频域特征组成特征矩阵,运用KSVM进行分类。 方法提亮:根据ECG特征是否易于识别,分步骤采用根据特征直接分类和非线性支持向量机智能分类技术,降低算法复杂度和运算量(图1)。结合频域和时域,在ECG特征空间选择与扩展上进行了有效提升(公式4)。运用遗传算法优化了SVM参数。 重要结论:时、频域结合的特征分析能够较全面地反映ECG特征。KSVM智能分类技术能够有效提高分类精度。 ECG质量评估;非线性支持向量机;遗传算法;功率谱;交叉验证 Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ataman, E., Aatre, V., Wong, K., 1980. A fast method for real-time median filtering. IEEE Trans. Acoust. Speech Signal Process., 28(4):415-421. ![]() [2]Biswal, B., Biswal, M.K., Dash, P.K., et al., 2013. Power quality event characterization using support vector machine and optimization using advanced immune algorithm. Neurocomputing, 103:75-86. ![]() [3]Chen, Y., Yang, H., 2012. Self-organized neural network for the quality control of 12-lead ECG signals. Physiol. Meas., 33(9):1399-1418. ![]() [4]Clifford, G.D., Moody, G.B., 2012. Signal quality in cardiorespiratory monitoring. Physiol. Meas., 33(9):E01. ![]() [5]Clifford, G.D., Behar, J., Li, Q., et al., 2012. Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol. Meas., 33(9):1419-1433. ![]() [6]Han, L., Kendall, G., 2003. Guided operators for a hyperheuristic genetic algorithm. LNCS, 2903:807-820. ![]() [7]Hayn, D., Jammerbund, B., Schreier, G., 2012. QRS detection based ECG quality assessment. Physiol. Meas., 33(9):1449-1462. ![]() [8]Johannesen, L., Galeotti, L., 2012. Automatic ECG quality scoring methodology: mimicking human annotators. Physiol. Meas., 33(9):1479-1489. ![]() [9]Kasturiwale, H.P., Deshmukh, C.N., 2009. Quality assessment of ICA for ECG signal analysis. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.73-75. ![]() [10]Khazaee, A., Ebrahimzadeh, A., 2010. Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomed. Signal Process. Contr., 5(4):252-263. ![]() [11]Kligfield, P., Gettes, L.S., Bailey, J.J., et al., 2007. Recommendations for the standardization and interpretation of the electrocardiogram. Part I: the electrocardiogram and its technology. A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol., 49(10):1109-1127. ![]() [12]Langley, P., di Marco, L.Y., King, S., et al., 2011. An algorithm for assessment of quality of ECGs acquired via mobile telephones. IEEE 38th Annual Scientific Conf. of Computing in Cardiology, p.281-284. ![]() [13]Li, Q., Clifford, G.D., 2012. Signal quality and data fusion for false alarm reduction in the intensive care unit. J. Electrocardiol., 45(6):596-603. ![]() [14]Liu, C.Y., Li, P., Zhao, L.N., et al., 2011. Real-time signal quality assessment for ECGs collected using mobile phones. IEEE 38th Annual Scientific Conf. of Computing in Cardiology, p.357-360. ![]() [15]Moody, G.B., 2011. Physionet/Computing in Cardiology Challenge 2011. Available from http://physionet.org/challenge/2011/. ![]() [16]Ramakrishnan, A.G., Saha, S., 1997. ECG coding by wavelet-based linear prediction. IEEE Trans. Biomed. Eng., 44(12):1253-1261. ![]() [17]Redmond, S.J., Xie, Y., Chang, D., et al., 2012. Electrocardiogram signal quality measures for unsupervised telehealth environments. Physiol. Meas., 33(9):1517-1534. ![]() [18]Suh, S.C., Gurupur, V.P., Tanik, M.M., 2011. Biomedical Engineering: Health Care Systems, Technology and Techniques. Springer, New York, USA, p.211-227. ![]() [19]Thakor, N.V., Webster, J.G., Tompkins, W.J., 1984. Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng., 31(11):702-706. ![]() [20]Wang, X., Yang, C., Qin, B., et al., 2005. Parameter selection of support vector regression based on hybrid optimization algorithm and its application. J. Contr. Theory Appl., 3(4):371-376. ![]() [21]Zaunseder, S., Huhle, R., Malberg, H., 2011. Assessing the usability of ECG by ensemble decision trees. IEEE 38th Annual Scientific Conf. of Computing in Cardiology, p.277-280. ![]() [22]Zhang, J.H., 2012. Optimization of kernel function parameters SVM based on the GA. Adv. Mater. Res., 433-440:4124-4128. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>