CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-06-16
Cited: 1
Clicked: 9516
Yi Xie, Hui-min Yu, Roland Hu. Probabilistic hypergraph based hash codes for social image search[J]. Journal of Zhejiang University Science C,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.C1300268 @article{title="Probabilistic hypergraph based hash codes for social image search", %0 Journal Article TY - JOUR
基于概率超图哈希编码的社交图像检索研究研究目的:在过去十多年中,互联网多媒体数据爆炸性增长,数以亿计的网络图片给传统图像检索技术带来了巨大挑战。在如此庞大数据量上进行特征空间欧式距离最近邻搜索,不切实际。如何更有效地表达和检索网络图片成为当前研究热点。针对此热点和难点,本文提出了基于概率超图哈希编码的大规模图像快速检索技术。创新要点:利用概率超图建立社交图片之间语义层面和视觉特征层面的关联性。相比简单图模型,超图模型能更有效地描述不同图片之间的高层次联系,寻找社交网络图片之间更深层次的信息。相比一般超图,概率超图能更有效地表述节点对超边的归属程度。利用超图拉普拉斯矩阵将概率超图投影到汉明(Hamming)空间,极大提升了图像存储、检索效率。 方法提亮:本方法结合了社交网络图片的视觉特征和用户标注信息,利用概率超图挖掘这两种信息的高层次关联性,并根据具体情况给予这两种信息不同权重。 重要结论:实验数据表明,与现有哈希检索方法相比,该方法对社交图像进行快速检索的准确率有较大提升。 超图拉普拉斯;概率超图;哈希编码;图像检索 Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Andoni, A., Indyk, P., 2006. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. 47th Annual IEEE Symp. on Foundations of Computer Science, p.459-468. ![]() [2]Arya, S., Mount, D.M., Netanyahu, N.S., et al., 1998. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. JACM, 45(6):891-923. ![]() [3]Bengio, Y., Delalleau, O., le Roux, N., et al., 2004. Learning eigenfunctions links spectral embedding and kernel PCA. Neur. Comput., 16(10):2197-2219. ![]() [4]Chua, T.S., Tang, J., Hong, R., et al., 2009. NUS-WIDE: a real-world web image database from National University of Singapore. Proc. ACM Int. Conf. on Image and Video Retrieval, p.48. ![]() [5]Gao, Y., Wang, M., Zha, Z.J., et al., 2013. Visual-textual joint relevance learning for tag-based social image search. IEEE Trans. Image Process., 22(1):363-376. ![]() [6]He, J., Li, M., Zhang, H.J., et al., 2004. Manifold-ranking based image retrieval. Proc. 12th Annual ACM Int. Conf. on Multimedia, p.9-16. ![]() [7]He, J., Li, M., Zhang, H.J., et al., 2006. Generalized manifold-ranking-based image retrieval. IEEE Trans. Image Process., 15(10):3170-3177. ![]() [8]Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507. ![]() [9]Huang, Y., Liu, Q., Zhang, S., et al., 2010. Image retrieval via probabilistic hypergraph ranking. IEEE Conf. on Computer Vision and Pattern Recognition, p.3376-3383. ![]() [10]Jiang, Y.G., Ngo, C.W., 2008. Bag-of-visual-words expansion using visual relatedness for video indexing. Proc. 31st Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.769-770. ![]() [11]Li, P., Wang, M., Cheng, J., et al., 2013. Spectral hashing with semantically consistent graph for image indexing. IEEE Trans. Multimedia, 15(1):141-152. ![]() [12]Liu, H., le Pendu, P., Jin, R., et al., 2011. A hypergraph-based method for discovering semantically associated itemsets. IEEE 11th Int. Conf. on Data Mining, p.398-406. ![]() [13]Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):91-110. ![]() [14]Salakhutdinov, R., Hinton, G.E., 2007. Learning a nonlinear embedding by preserving class neighborhood structure. Int. Conf. on Artificial Intelligence and Statistics, p.412-419. ![]() [15]Shakhnarovich, G., Viola, P., Darrel, T., 2003. Fast pose estimation with parameter-sensitive hashing. Proc. 9th IEEE Int. Conf. on Computer Vision, p.750-757. ![]() [16]Silpa-Anan, C., Hartley, R., 2008. Optimised KD-trees for fast image descriptor matching. IEEE Conf. on Computer Vision and Pattern Recognition, p.1-8. ![]() [17]Torralba, A., Fergus, R., Weiss, Y., 2008. Small codes and large image databases for recognition. IEEE Conf. on Computer Vision and Pattern Recognition, p.1-8. ![]() [18]Weiss, Y., Torralba, A., Fergus, R., 2008. Spectral hashing. 21st Advances in NIPS, p.1753-1760. ![]() [19]Xia, S., Hancock, E.R., 2008. Clustering using class specific hyper graphs. Structural, Syntactic, and Statistical Pattern Recognition, p.318-328. ![]() [20]Yang, J., Jiang, Y.G., Hauptmann, A.G., et al., 2007. Evaluating bag-of-visual-words representations in scene classification. Proc. Int. Workshop on Multimedia Information Retrieval, p.197-206. ![]() [21]Yu, J., Tao, D., Wang, M., 2012. Adaptive hypergraph learning and its application in image classification. IEEE Trans. Image Process., 21(7):3262-3272. ![]() [22]Zass, R., Shashua, A., 2008. Probabilistic graph and hypergraph matching. IEEE Conf. on Computer Vision and Pattern Recognition, p.1-8. ![]() [23]Zhang, D., Wang, J., Cai, D., et al., 2010. Self-taught hashing for fast similarity search. Proc. 33rd Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.18-25. ![]() [24]Zhou, D., Bousquet, O., Lal, T.N., et al., 2004. Learning with local and global consistency. 17th Advances in NIPS, p.321-328. ![]() [25]Zhou, D., Huang, J., Schölkopf, B., 2006. Learning with hypergraphs: clustering, classification, and embedding. 19th Advances in NIPS, p.1601-1608. ![]() [26]Zhuang, Y., Liu, Y., Wu, F., et al., 2011. Hypergraph spectral hashing for similarity search of social image. Proc. 19th ACM Int. Conf. on Multimedia, p.1457-1460. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>