CLC number: TN713+.7
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-07-16
Cited: 4
Clicked: 9989
De-xuan Zou, Li-qun Gao, Steven Li. Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm[J]. Journal of Zhejiang University Science C,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.C1300350 @article{title="Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm", %0 Journal Article TY - JOUR
基于排序差分进化算法优化非线性离散时间系统的Volterra滤波器模型研究目的:使用Volterra滤波器模型识别非线性离散时间系统,以合理选择Volterra滤波器模型的参数,获得理想的识别效果。研究方法:提出排序差分进化算法,结合正弦函数和随机数产生尺度因子,有效平衡全局和局部搜索能力;在完成所有候选解排序后,修正了变异操作,有助于避免算法早熟。使用二阶Volterra模型研究非线性离散时间系统(图3–8)。 重要结论:数值实验和比较说明排序差分进化算法具有较强优化性能,且在大多数情况下优于其他方法。结合排序差分进化算法和二阶Volterra模型,可以获得较好识别效果。 排序差分进化;识别问题;非线性离散时间系统;Volterra滤波器模型;早熟 Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Babu, B.V., Angira, R., 2006. Modified differential evolution (MDE) for optimization of non-linear chemical processes. Comput. Chem. Eng., 30(6-7):989-1002. ![]() [2]Brest, J., Greiner, S., Boskovic, B., et al., 2006. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput., 10(6):646-657. ![]() [3]Chang, W.D., 2012. Volterra filter modeling of nonlinear discrete-time system using improved particle swarm optimization. Dig. Signal Process., 22(6):1056-1062. ![]() [4]Cheng, C.H., Powers, E.J., 2001. Optimal Volterra kernel estimation algorithms for a nonlinear communication system for PSK and QAM inputs. IEEE Trans. Signal Process., 49(1):147-163. ![]() [5]Contan, C., Kirei, B.S., Topa, M.D., 2013. Modified NLMF adaptation of Volterra filters used for nonlinear acoustic echo cancellation. Signal Process., 93(5):1152-1161. ![]() [6]Derrac, J., García, S., Molina, D., et al., 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput., 1(1):3-18. ![]() [7]Ji, W., Gan, W.S., 2012. Identification of a parametric loudspeaker system using an adaptive Volterra filter. Appl. Acoust., 73(12):1251-1262. ![]() [8]Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942-1948. ![]() [9]Krall, C., Witrisal, K., Leus, G., et al., 2008. Minimum mean-square error equalization for second-order Volterra systems. IEEE Trans. Signal Process., 56(10):4729-4737. ![]() [10]Kuruoğlu, E.E., 2002. Nonlinear least lp-norm filters for nonlinear autoregressive α-stable processes. Dig. Signal Process., 12(1):119-142. ![]() [11]Li, X., Yin, M., 2012. Optimal synthesis of linear antenna array with composite differential evolution algorithm. Sci. Iran., 19(6):1780-1787. ![]() [12]Mleczko, M., Postema, M., Schmitz, G., 2009. Discussion of the application of finite Volterra series for the modeling of the oscillation behavior of ultrasound contrast agents. Appl. Acoust., 70(10):1363-1369. ![]() [13]Nam, S.W., Powers, E.J., 2003. Volterra series representation of time-frequency distributions. IEEE Trans. Signal Process., 51(6):1532-1537. ![]() [14]Shi, Y.H., Eberhart, R.C., 1999. Empirical study of particle swarm optimization. Proc. Congress on Evolutionary Computation, p.1945-1950. ![]() [15]Storn, R., Price, K., 1995. Differential Evolution—a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. International Computer Science Institute, Berkeley, USA. ![]() [16]Sumar, R.R., Coelho, A.A.R., Coelho, L.D.S., 2010. Computational intelligence approach to PID controller design using the universal model. Inform. Sci., 180(20):3980-3991. ![]() [17]Tang, H., Liao, Y.H., Cao, J.Y., et al., 2010. Fault diagnosis approach based on Volterra models. Mech. Syst. Signal Process., 24(4):1099-1113. ![]() [18]Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometr. Bull., 1(6):80-83. ![]() [19]Zhang, J.S., Zhao, H.Q., 2010. A novel adaptive bilinear filter based on pipelined architecture. Dig. Signal Process., 20(1):23-38. ![]() [20]Zou, D.X., Liu, H.K., Gao, L.Q., et al., 2011. An improved differential evolution algorithm for the task assignment problem. Eng. Appl. Artif. Intell., 24(4):616-624. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>