CLC number: TN47
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-04-11
Cited: 5
Clicked: 10558
Kai-sheng Luo, Zheng Shi, Xiao-lang Yan, Zhen Geng. SVM based layout retargeting for fast and regularized inverse lithography[J]. Journal of Zhejiang University Science C,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.C1300357 @article{title="SVM based layout retargeting for fast and regularized inverse lithography", %0 Journal Article TY - JOUR
基于支持向量机的反向光刻版图重定向算法创新要点:与传统版图重定向方法不同,本文提出的版图重定向方法使用了与反向光刻匹配的基于点的版图预偏移机制,试图通过改变版图上每个点的值,得到与最终优化版图接近的重定向版图。由于掩模上的点只有0和1两种取值,对版图上点的值进行优化等同于对版图上的点进行分类;使用支持向量机实现此功能。 方法提亮:针对反向光刻技术,首次提出一种版图重定向方法,通过对传统反向光刻优化方法得到的优化结果进行学习,得到支持向量机模型。使用这些模型,对需要进行重定向的版图上的每个点,根据他们的环境进行分类。 重要结论:在不增加优化版图复杂度的条件下,我们提出的版图重定向方法可以得到十分接近最终优化版图的重定向版图,同时减少70.8%的反向光刻优化所需要的迭代次数以及69.0%的优化时间。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Banerjee, S., Agarwal, K.B., 2011. Integrated model-based retargeting and optical proximity correction. SPIE, 7974:79740F. ![]() [2]Byun, H., Lee, S.W., 2002. Pattern Recognition with Support Vector Machine. Springer, Berlin, Heidelberg, p.571-591. ![]() [3]Chen, Y., Wu, K., Shi, Z., et al., 2007. A feasible model-based OPC algorithm using Jacobian matrix of intensity distribution functions. SPIE, 6520:65204C. ![]() [4]Chiang, C., Kawa, J., 2007. Design for manufacturability and yield for nano-scale CMOS. Series on Integrated Circuits and Systems. Springer, Dordrecht, The Netherlands, p.58-72. ![]() [5]Cobb, N.B., Zakhor, A., 1995. Fast sparse aerial image calculation for OPC. SPIE, 2621:534-545. ![]() [6]Cobb, N.B., Zakhor, A., Miloslavsky, E.A., 1996. Mathematical and CAD framework for proximity correction. SPIE, 2726:208-222. ![]() [7]Corinna, C., Vladimir, V., 1995. Support-vector networks. Mach. Learn., 20(3):273-297. ![]() [8]Erdmann, A., Farkas, R., Fuhner, T., et al., 2004. Towards automatic mask and source optimization for optical lithography. SPIE, 5377:646-657. ![]() [9]Garofalo, J., Low, K., Otto, O., et al., 1994. Automatic proximity correction for 0.35 μm I-line photolithography. Proc. IEEE Int. Workshop on Numerical Modeling of Processes Devices for Integrated Circuits, p.92-94. ![]() [10]Geng, Z., Shi, Z., Yan, X.L., et al., 2013. Regularized level-set-based inverse lithography algorithm for IC mask synthesis. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(10):799-807. ![]() [11]Granik, Y., 2005. Solving inverse problems of optical microlithography. SPIE, 5754:506-526. ![]() [12]Granik, Y., 2006. Fast pixel-based mask optimization for inverse lithography. J. Micro/Nanolith. MEMS MOEMS, 5(4):043002. ![]() [13]Gu, A., Zakhor, A., 2008. Optical proximity correction with linear regression. IEEE Trans. Semicond. Manuf., 21(2):263-271. ![]() [14]Hopkins, H.H., 1953. On the diffraction theory of optical images. Proc. R. Soc. Lond. A, 217(1130):408-432. ![]() [15]Huang, W.C., Lai, C.M., Luo, B., et al., 2006. Intelligent model-based OPC. SPIE, 6154:615436. ![]() [16]Hung, M., Balasingam, P., 2002. Hybrid optical proximity correction: concepts and results. SPIE, 4889:1173-1180. ![]() [17]ITRS, 2012. International Technology Roadmap for Semiconductors 2012 Update Overview. ITRS. Available from http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf [Accessed on Sept. 1, 2013]. ![]() [18]Kotani, T., Kobayashi, S., Ichikawa, H., et al., 2002. Advanced hybrid optical proximity correction system with OPC segment library and model-based correction module. SPIE, 4691:188-195. ![]() [19]Lin, B., Yan, X.L., Shi, Z., et al., 2011. A sparse matrix model-based OPC algorithm with model-based mapping between segments and control sites. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 12(5):436-442. ![]() [20]Lv, W., Xia, Q., Liu, S., 2013. Pixel-based inverse lithography using a mask filtering technique. SPIE, 8683:868325. ![]() [21]Ma, X., Arce, G., 2007. Generalized inverse lithography methods for phase-shifting mask design. Opt. Expr., 15(23):15066-15079. ![]() [22]Ma, X., Arce, G., 2008. Binary mask optimization for inverse lithography with partially coherent illumination. J. Opt. Soc. Am. A, 25(12):2960-2970. ![]() [23]Ma, X., Li, Y.Q., 2011. Resolution enhancement optimization methods in optical lithography with improved manufacturability. J. Micro/Nanolith. MEMS MOEMS, 10(2):023009. ![]() [24]Ma, X., Li, Y.Q., Dong, L.S., 2012a. Mask optimization approaches in optical lithography based on a vector imaging model. J. Opt. Soc. Am. A, 29(7):1300-1312. ![]() [25]Ma, X., Li, Y.Q., Guo, X.J., et al., 2012b. Vectorial mask optimization methods for robust optical lithography. J. Micro/Nanolith. MEMS MOEMS, 11(4):043008. ![]() [26]Oh, Y., Lee, J.C., Lim, S., 1999. Resolution enhancement through optical proximity correction and stepper parameter optimization for 0.12-μm mask pattern. SPIE, 3679:607-613. ![]() [27]Osher, S., Sethian, J.A., 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12-49. ![]() [28]Pang, L.Y., Dai, G., Cecil, T., et al., 2008. Validation of inverse lithography technology (ILT) and its adaptive SRAF at advanced technology nodes. SPIE, 6924:69240T. ![]() [29]Park, J., Park, C., Phie, S., et al., 2000. An efficient rule-based OPC approach using DRC tool for 0.18 μm ASIC. Proc. IEEE 1st Int. Symp. on Quality Electronic Design, p.81-85. ![]() [30]Platt, J.C., 1998. Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines. Technical Report MsR-TR-98-14, Microsoft Research, Microsoft Inc., Redmond, WA. ![]() [31]Poonawala, A., Milanfar, P., 2007a. Mask design for optical microlithography—an inverse imaging problem. IEEE Trans. Image Process., 16(3):774-778. ![]() [32]Poonawala, A., Milanfar, P., 2007b. A pixel-based regularization approach to inverse lithography. Microelectro. Eng., 84(12):2837-2852. ![]() [33]Shen, S.H., Peng, Y., Pan, D.Z., 2008. Enhanced DCT2-based inverse mask synthesis with initial SRAF insertion. SPIE, 7122:712241. ![]() [34]Shen, Y.J., Wong, N., Lam, E.Y., 2009. Level-set-based inverse lithography for photomask synthesis. Opt. Expr., 17(26):23690-23701. ![]() [35]Wong, A.K.K., 2001. Resolution Enhancement Techniques in Optical Lithography. SPIE Press, Bellingham, Washington, USA, p.28. ![]() [36]Yang, E., Li, C.H., Kang, X.H., et al., 2009. Model-based retarget for 45nm node and beyond. SPIE, 7274:727428. ![]() [37]Yang, Y.W., Shi, Z., Shen, S.H., 2009. Seamless-merging-oriented parallel inverse lithography technology. J. Semicond., 30(10):106002-106006. ![]() [38]Yu, P., Pan, D.Z., 2007. TIP-OPC: a new topological invariant paradigm for pixel based optical proximity correction. Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, p.847-853. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>