CLC number: TP18
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-07-16
Cited: 1
Clicked: 8736
Zhi-qiang Feng, Cun-gen Liu, Hu Huang. Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion[J]. Journal of Zhejiang University Science C,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.C1300370 @article{title="Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion", %0 Journal Article TY - JOUR
基于区间值模糊粗糙集的知识建模及相似性推理:焊接变形预报研究目的:知识获取和知识推理是智能系统开发中的两大环节。基于知识的非机理性建模方法已成为复杂过程建模的一种趋势。为解决建模过程中对经验知识的依赖问题,进一步完善推理机制,本文基于粗糙集和区间值模糊集理论,研究知识建模及近似推理方法,并将其应用于船体结构焊接变形预报。对建模与推理中的理论、方法和实际问题的研究有助于认识焊接变形规律,并可进一步推广至其他复杂过程,促进系统建模理论的发展。创新要点:将区间值模糊集与粗糙集理论结合,通过引入新的包含度来构造区间值模糊粗糙集模型,经过数据采集、区间值模糊化、属性约简、规则抽取等步骤,从信息系统中提取出一个简化的模糊知识模型,给出获取模糊知识模型的完整算法;通过对经典的合成规则推理与现有的相似性推理的机理分析,提出一种新的相似性推理--基于合成规则的相似性推理方法。 方法提亮:与现有的智能方法相比,本文的知识建模方法不依赖于经验知识,所构建的模型易于理解和编辑,运行速度快,计算精度较高,对复杂过程建模有较强的适应性。改进的相似性推理方法,既考虑规则前提与结论之间的内在关联,又把相似性匹配作为必要环节,这样,输入和前提所发生的变化均能在输出中反映出来,推理结果更趋合理。 重要结论:将上述方法应用在焊接变形预报方面,实验结果验证了算法有效性,表明算法对复杂过程建模具有较强适应性。 知识建模;区间值模糊粗糙集;相似性推理;焊接变形预报 Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Atanassov, K.T., 1986. Intuitionistic fuzzy sets. Fuzzy Sets Syst., 20(1):87-96. ![]() [2]Bustince, H., Burillo, P., 1996. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst., 79(3):403-405. ![]() [3]Chen, S.M., 1994. A weighted fuzzy reasoning algorithm for medical diagnosis. Dec. Support Syst., 11(1):37-43. ![]() [4]Chen, S.M., 1997. Bidirectional approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst., 91(3):339-353. ![]() [5]Cornelis, C., Jensen, R., 2010. Attribute selection with fuzzy decision reducts. Inform. Sci., 180(2):209-224. ![]() [6]Cornelis, C., Cock, M.D., Kerre, E.E., 2003. Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge. Expert Syst., 20(5):260-270. ![]() [7]Cornelis, C., Deschrijver, G., Kerre, E.E., 2004. Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int. J. Approx. Reas., 35(1):55-95. ![]() [8]Deschrijver, G., Kerre, E.E., 2003. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst., 133(2):227-235. ![]() [9]Dubois, D., Prade, H., 1990. Rough sets and fuzzy rough sets. Int. J. Gener. Syst., 17(2-3):191-209. ![]() [10]Fan, F., Li, J.Z., Gao, Z.A., 2008. Design of self-adaptive PID controller based on GA-vague sets. Comput. Eng. Appl., 44(29):99-101 (in Chinese). ![]() [11]Feng, L., Wang, G.Y., 2010. Knowledge acquisition in vague objective information systems based on rough sets. Expert Syst., 27(2):129-142. ![]() [12]Feng, Z.Q., Liu, C.G., 2012. On vague logics and approximate reasoning based on vague linear transformation. Int. J. Syst. Sci., 43(9):1591-1602. ![]() [13]Gau, W.L., Buehrer, D.J., 1993. Vague sets. IEEE Trans. Syst. Man Cybern., 23(2):610-614. ![]() [14]Gong, Z.T., Sun, B.Z., Chen, D.G., 2008. Rough set theory for the interval-valued fuzzy information systems. Inform. Sci., 178(8):1968-1985. ![]() [15]Gorzalczany, M.B., 1987. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst., 21(1):1-17. ![]() [16]Guan, Y.Y., Wang, H.K., 2006. Set-valued information systems. Inform. Sci., 176(17):2507-2525. ![]() [17]Hai, X., Lei, Y.J., 2010. Intuitionistic fuzzy approximate reasoning based on weighted similarity measure. Comput. Eng. Des., 31(21):4678-4681 (in Chinese). ![]() [18]Jensen, R., Shen, Q., 2009. New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst., 17(4):824-838. ![]() [19]Kuncheva, L.I., 1992. Fuzzy rough sets: application to feature selection. Fuzzy Sets Syst., 51(2):147-153. ![]() [20]Liang, J.R., 2007. The research of vague-rough sets based on triangle model. Comput. Sci., 34(10):185-187 (in Chinese). ![]() [21]Ou, X.Y., Zhang, F.J., Wei, Y.B., 2009. Vague set fuzzy reasoning mechanism based on the temperature control system design. J. Qiongzhou Univ., 16(5):29-31 (in Chinese). ![]() [22]Pawlak, Z., 1982. Rough sets. Int. J. Comput. Inform. Sci., 11(5):341-356. ![]() [23]Qiu, W.G., 2006. Rough vague sets based on general binary relation. Comput. Sci., 33(2):191-192 (in Chinese). ![]() [24]Raha, S., 2008. Similarity based approximate reasoning: fuzzy control. J. Appl. Logic, 6(1):47-71. ![]() [25]Shen, Q., Chouchoulas, A., 2000. A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Eng. Appl. Artif. Intell., 13(3):263-278. ![]() [26]Turksen, I.B., 1986. Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst., 20(2):191-210. ![]() [27]Turksen, I.B., Zhao, Z., 1988. An approximate analogical reasoning based on similarity measures. IEEE Trans. Syst. Man Cybern., 18(6):1049-1056. ![]() [28]Wan, S.P., 2010. Survey on intuitionistic fuzzy multi-attribute decision making approach. Contr. & Dec., 25(11):1061-1066 (in Chinese). ![]() [29]Wang, D.G., Meng, Y.P., Li, H.X., 2008. A fuzzy similarity inference method for fuzzy reasoning. Comput. Math. Appl., 56(10):2445-2454. ![]() [30]Yang, H.C., Chen, H., 2011. Intuitionistic fuzzy approximate reasoning based on intuitionistic fuzzy operation. Appl. Res. Comput., 28(1):102-104 (in Chinese). ![]() [31]Yang, L.J., Wang, Y.L., 2010. A new similarity measure and its application to pattern recognition. J. Yunnan Univ. Natl., 19(1):71-73 (in Chinese). ![]() [32]Yeung, D.S., Tsang, E.C.C., 1997. A comparative study on similarity-based fuzzy reasoning methods. IEEE Trans. Syst. Man Cybern. B, 27(2):216-227. ![]() [33]Zadeh, L.A., 1965. Fuzzy sets. Inform. Contr., 8(3):338-353. ![]() [34]Zhang, Q.S., Jiang, S.Y., 2010. System decision making method based on vague bidirectional approximate reasoning. Comput. Sci., 37(4):219-223 (in Chinese). ![]() [35]Zheng, C.H., Li, T.F., Gui, J.Z., 2008. Study on aeroengine fault diagnosis based on similarity measures between vague sets. Aeronaut. Comput. Techn., 38(2):34-36 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>