Full Text:  <3248>

Summary:  <1304>

CLC number: TN29

On-line Access: 2021-03-08

Received: 2020-01-17

Revision Accepted: 2020-05-07

Crosschecked: 2020-06-05

Cited: 0

Clicked: 4253

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shuai Wang

https://orcid.org/0000-0003-1035-4518

Lu-ming Zhao

https://orcid.org/0000-0002-4150-1157

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser


Author(s):  Shuai Wang, Lei Li, Yu-feng Song, Ding-yuan Tang, De-yuan Shen, Lu-ming Zhao

Affiliation(s):  Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; more

Corresponding email(s):  sdulilei@gmail.com, lmzhao@ieee.org

Key Words:  Vector soliton, Noise-like pulse, MXene, Laser fiber


Share this article to: More <<< Previous Paper|Next Paper >>>

Shuai Wang, Lei Li, Yu-feng Song, Ding-yuan Tang, De-yuan Shen, Lu-ming Zhao. Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2000033

@article{title="Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser",
author="Shuai Wang, Lei Li, Yu-feng Song, Ding-yuan Tang, De-yuan Shen, Lu-ming Zhao",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2000033"
}

%0 Journal Article
%T Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser
%A Shuai Wang
%A Lei Li
%A Yu-feng Song
%A Ding-yuan Tang
%A De-yuan Shen
%A Lu-ming Zhao
%J Frontiers of Information Technology & Electronic Engineering
%P 318-324
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2000033"

TY - JOUR
T1 - Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser
A1 - Shuai Wang
A1 - Lei Li
A1 - Yu-feng Song
A1 - Ding-yuan Tang
A1 - De-yuan Shen
A1 - Lu-ming Zhao
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 318
EP - 324
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2000033"


Abstract: 
We built a Tm:Ho co-doped fiber laser using a Ti3C2 MXene material as a saturable absorber (SA). The formation of vector solitons (VSs) and noise-like pulses (NLPs) was observed. The SA was prepared by dripping a Ti3C2 solution on a side-polished D-shaped fiber and then naturally vaporized. The VS is characterized by two coexisting sets of Kelly sidebands. By modulating the polarization controller in the fiber laser, NLPs with about 3.3 nm bandwidth can be switched from the VS. To the best of our knowledge, this is the first time that VSs have been generated in a fiber laser using a Ti3C2 MXene material as the SA.

在光纤激光器中利用Ti3C2 MXene材料产生矢量孤子和类噪声脉冲

王帅1,李雷1,宋宇峰2,唐定远3,沈德元1,赵鹭明1,4
1江苏师范大学物理与电子工程学院,江苏省先进激光技术与新兴产业协同创新中心江苏省先进激光材料与器件重点实验室,中国徐州市,221116
2深圳大学深圳市黑磷工程实验室,国际微尺度光电子研究所,教育部二维材料光电科技国际合作联合实验室,中国深圳市,518060
3南洋理工大学电气与电子工程学院,新加坡,639798
4昆山瞬刻激光科技有限公司,中国苏州市,215300
摘要:本文利用Ti3C2 MXene材料作为可饱和吸收体,搭建了铥钬共掺光纤激光器,观察到矢量孤子和类噪声脉冲的形成。其中,可饱和吸收体是通过将Ti3C2溶液滴在侧面抛光的D形光纤上自然挥发后制备而成。观察到的矢量孤子光谱上同时存在两组Kelly边带。通过调节光纤激光器中的偏振控制器,可以将矢量孤子转变为光谱带宽约3.3 nm的类噪声脉冲。据我们所知,这是首次利用Ti3C2 MXene材料作为可饱和吸收体从光纤激光器中获得矢量孤子。

关键词组:矢量孤子;类噪声脉冲;MXene;光纤激光器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen Y, Jiang GB, Chen SQ, et al., 2015. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt Expr, 23(10):12823-12833.

[2]Feng XY, Ding BY, Liang WY, et al., 2018. MXene Ti3C2Tx absorber for a 1.06 μm passively Q-switched ceramic laser. Laser Phys Lett, 15(8):085805.

[3]Hantanasirisakul K, Zhao MQ, Urbankowski P, et al., 2016. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater, 2(6):1600050.

[4]Jiang Q, Zhang M, Zhang Q, et al., 2019. Thulium-doped mode-locked fiber laser with MXene saturable absorber. Conf on Lasers and Electro-Optics, Article SF3O.3.

[5]Jiang T, Yin K, Wang C, et al., 2020. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photon Res, 8(1):78-90.

[6]Lei JC, Zhang X, Zhou Z, 2015. Recent advances in MXene: preparation, properties, and applications. Front Phys, 10(3):276-286.

[7]Li J, Zhang ZL, Du L, et al., 2019. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T=F, O, or OH) mode-locked fiber laser. Photon Res, 7(3):260-264.

[8]Lu J, Zou X, Li C, et al., 2017. Picosecond pulse generation in a mono-layer MoS2 mode-locked Ytterbium-doped thin disk laser. Chin Opt Lett, 15(4):041401.

[9]Luo ZQ, Zhou M, Weng J, et al., 2010. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt Lett, 35(21):3709-3711.

[10]Miao RL, Tong MY, Yin K, et al., 2019. Soliton mode-locked fiber laser with high-quality MBE-grown Bi2Se3 film. Chin Opt Lett, 17(7):071403.

[11]Naguib M, Kurtoglu M, Presser V, et al., 2011. Two‐ dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 23(37):4248-4253.

[12]Nicholson JW, Windeler RS, DiGiovanni DJ, 2007. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt Expr, 15(15):9176-9183.

[13]Qin ZP, Xie GQ, Zhang H, et al., 2015. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm. Opt Expr, 23(19):24713-24718.

[14]Scholle K, Lamrini S, Koopmann P, et al., 2010. 2 µm laser sources and their possible applications. In: Pal B (Ed.), Frontiers in Guided Wave Optics and Optoelectronics. InTech, Vukovar, p.471-500.

[15]Shi W, Fang Q, Zhu XS, et al., 2014. Fiber lasers and their applications [invited]. Appl Opt, 53(28):6554-6568.

[16]Song YF, Zhang H, Tang DY, et al., 2012. Polarization rotation vector solitons in a graphene mode-locked fiber laser. Opt Expr, 20(24):27283-27289.

[17]Song YF, Chen S, Zhang Q, et al., 2016. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt Expr, 24(23):25933-25942.

[18]Song YF, Chen YX, Jiang XT, et al., 2019a. Nonlinear few‐layer MXene‐assisted all‐optical wavelength conversion at telecommunication band. Adv Opt Mater, 7(18):1801777.

[19]Song YF, Shi XJ, Wu CF, et al., 2019b. Recent progress of study on optical solitons in fiber lasers. Appl Phys Rev, 6(2):021313.

[20]Sotor J, Sobon G, Kowalczyk M, et al., 2015. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt Lett, 40(16):3885-3888.

[21]Tang YX, Chong A, Wise FW, 2015. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser. Opt Lett, 40(10):2361-2364.

[22]Wang C, Peng QQ, Fan XW, et al., 2018. MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 μm. Chin Phys B, 27(9):094214.

[23]Wang C, Wang YZ, Jiang XT, et al., 2019. MXene Ti3C2Tx: a promising photothermal conversion material and application in all‐optical modulation and all‐optical information loading. Adv Opt Mater, 7(12):1900060.

[24]Yin K, Zhang B, Li L, et al., 2015. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm. Photon Res, 3(3):72-76.

[25]Zhang CX, Ouyang H, Miao RL, et al., 2019. Anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all‐optical switching. Adv Opt Mater, 7(18):1900631.

[26]Zhang H, Tang DY, Zhao LM, et al., 2009. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt Expr, 17(20):17630-17635.

[27]Zhang H, Tang DY, Knize RJ, et al., 2010. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl Phys Lett, 96(11):111112.

[28]Zhang J, Jiang T, Zhou T, et al., 2018. Saturated absorption of different layered Bi2Se3 films in the resonance zone. Photon Res, 6(10):C8-C14.

[29]Zhao B, Tang DY, Kong J, et al., 2005. Periodic soliton amplitude variation caused by unstable dispersive waves in a laser. Opt Commun, 254(4-6):242-247.

[30]Zu YQ, Zhang C, Guo XS, et al., 2019. A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm. Laser Phys Lett, 16(1):015803.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE