Full Text:  <683>

Suppl. Mater.: 

Summary:  <146>

CLC number: 

On-line Access: 2023-11-13

Received: 2022-10-04

Revision Accepted: 2023-02-22

Crosschecked: 2023-11-14

Cited: 0

Clicked: 873

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lian DUAN

https://orcid.org/0009-0009-9836-9714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres


Author(s):  Lian DUAN, Zhixun XIA, Yunchao FENG, Binbin CHEN, Jiarui ZHANG, Likun MA

Affiliation(s):  College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):  chenbinbin11@nudt.edu.cn

Key Words:  Boron combustion; Amorphous boron; Boron-containing propellant; Solid fuel ramjet


Share this article to: More <<< Previous Paper|Next Paper >>>

Lian DUAN, Zhixun XIA, Yunchao FENG, Binbin CHEN, Jiarui ZHANG, Likun MA. Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200468

@article{title="Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres",
author="Lian DUAN, Zhixun XIA, Yunchao FENG, Binbin CHEN, Jiarui ZHANG, Likun MA",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2200468"
}

%0 Journal Article
%T Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres
%A Lian DUAN
%A Zhixun XIA
%A Yunchao FENG
%A Binbin CHEN
%A Jiarui ZHANG
%A Likun MA
%J Journal of Zhejiang University SCIENCE A
%P 949-959
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2200468"

TY - JOUR
T1 - Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres
A1 - Lian DUAN
A1 - Zhixun XIA
A1 - Yunchao FENG
A1 - Binbin CHEN
A1 - Jiarui ZHANG
A1 - Likun MA
J0 - Journal of Zhejiang University Science A
SP - 949
EP - 959
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2200468"


Abstract: 
In ramjet combustion chambers, carbon dioxide (CO2) produced by the combustion of carbonaceous fuel enters the chamber together with boron agglomerates. In order to investigate the effect of CO2 concentration present in an oxygen-containing atmosphere on the combustion characteristics and oxidation mechanisms of boron agglomerates, we used a laser ignition system, an X-ray diffractometer (XRD), and a thermogravimetric-differential scanning calorimetry (TG-DSC) combined thermal analysis system. Single-particle boron was tested in the laser-ignition experiments as the control group. The ignition experiment results showed that with a fixed O2 concentration of 20%, when the particle temperature reaches the melting point of boron, increasing CO2 content causes the combustion process of boron agglomerates to transition from single-particle molten droplet combustion to porous-particle combustion. Furthermore, XRD analysis results indicated that the condensed-phase combustion products (CCPs) of boron particles in a mixed atmosphere of O2 and CO2 contained B4C, which is responsible for the porous structure of the particles. At temperatures below 1200 °C, the addition of CO2 has no obvious promotion effect on boron exothermic reaction. However, in the laser-ignition experiment, when the oxygen concentration was fixed at 20% while the CO2 concentration increased from 0% to 80%, the maximum temperature of boron agglomerates rose from 2434 to 2573 K, the self-sustaining combustion time of single-particle boron decreased from 396 to 169 ms, and the self-sustaining combustion time of boron agglomerates decreased from 198 to 40 ms. This study conclusively showed that adding CO2 to an oxygen-containing atmosphere facilitates boron reaction and consumption pathways, which is beneficial to promoting exothermic reaction of boron agglomerates at relatively high temperatures.

含氧气氛中的二氧化碳浓度对硼团聚体燃烧特性的影响

作者:段炼,夏智勋,冯运超,陈斌斌,张家瑞,马立坤
机构:国防科技大学,空天科学学院,中国长沙,410073
目的:在冲压发动机燃烧室中,含碳燃料燃烧产生的CO2与硼团聚体一起进入燃烧室。本文旨在探究在O2浓度固定的情况下,CO2浓度对团聚硼燃烧特性的影响规律,以深入认识在O2和CO2共存的情况下,团聚硼的燃烧模式以及硼的反应和能量释放路径。
创新点:1.直接观测燃烧过程中,团聚硼的表面形貌的变化过程;2.通过凝相燃烧产物分析测试获得团聚硼在O2和CO2共存的气氛中的反应消耗路径。
方法:1.通过激光点火实验,直接观察在不同CO2浓度的气氛下,团聚硼燃烧过程中的表面形貌、颗粒结构和火焰形貌的演变过程(图3~5);2.分析得到凝相燃烧产物的表面形貌、元素成分以及晶体结构(图10~12);3.通过热重-差示扫描量热法获得在不同CO2浓度的气氛中,团聚硼的低温氧化过程。
结论:1.硼团聚体在高温含氧气氛中可与CO2反应生成B4C,增加硼的反应和消耗途径,改变了颗粒的物理化学性质和燃烧状态;2.在O2浓度固定为20%的气氛中,当颗粒温度达到硼的熔点时,CO2含量的增加使得硼团聚体的燃烧模式由单颗粒液滴燃烧转变为多孔颗粒燃烧;3.当颗粒温度低于B2O3的沸点时,B4C氧化生成的B2O3形成玻璃态液膜覆盖在颗粒表面,阻碍颗粒进一步燃烧。

关键词组:硼燃烧;无定形硼;含硼推进剂;固体燃料冲压发动机

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BurkholderTR, AndrewsL, 1991. Reactions of boron atoms with molecular oxygen. Infrared spectra of BO, BO2, B2O2, B2O3, and BO2- in solid argon. The Journal of Chemical Physics, 95(12):8697-8709.

[2]BurkholderTR, AndrewsL, BartlettRJ, 1993. Reaction of boron atoms with carbon dioxide: matrix and ab initio calculated infrared spectra of OBCO. The Journal of Physical Chemistry, 97(14):3500-3503.

[3]ChenBB, XiaZX, HuangLY, et al., 2018. Characteristics of the combustion chamber of a boron-based solid propellant ducted rocket with a chin-type inlet. Aerospace Science and Technology, 82-83:210-219.

[4]ChinCH, MebelAM, HwangDY, 2003. Theoretical study of the reaction mechanism of boron atom with carbon dioxide. Chemical Physics Letters, 375(5-6):670-675.

[5]DiGiuseppeTG, DavidovitsP, 1981. Boron atom reactions. II. Rate constants with O2, SO2, CO2, and N2O. The Journal of Chemical Physics, 74(6):3287-3291.

[6]DuanL, XiaZX, ChenBB, et al., 2022. Ignition and combustion characteristics of boron agglomerates under different oxygen concentrations. Acta Astronautica, 197:81-90.

[7]FoelscheRO, BurtonRL, KrierH, 1999. Boron particle ignition and combustion at 30‍–‍150 atm. Combustion and Flame, 117(1-2):32-58.

[8]FryRS, 2004. A century of ramjet propulsion technology evolution. Journal of Propulsion and Power, 20(1):27-58.

[9]HashimSA, IslamM, KangleSM, et al., 2021. Performance evaluation of boron/hydroxyl-terminated polybutadiene-based solid fuels containing activated charcoal. Journal of Spacecraft and Rockets, 58(2):363-374.

[10]JainA, AnthonysamyS, 2015. Oxidation of boron carbide powder. Journal of Thermal Analysis and Calorimetry, 122(2):645-652.

[11]KingMK, 1973. Boron particle ignition in hot gas streams. Combustion Science and Technology, 8(5-6):255-273.

[12]KrierH, BurtonRL, PirmanSR, et al., 1996. Shock initiation of crystalline boron in oxygen and fluorine compounds. Journal of Propulsion and Power, 12(4):672-679.

[13]LiHP, AoW, WangY, et al., 2014. Effect of carbon dioxide on the reactivity of the oxidation of boron particles. Propellants, Explosives, Pyrotechnics, 39(4):617-623.

[14]LiXP, GeLH, LuanXT, 2007. Applications of gas generator in ramjet direct-connect test facility. Journal of Rocket Propulsion, 33(3):14-19 (in Chinese).

[15]LiYQ, QiuT, 2007. Oxidation behaviour of boron carbide powder. Materials Science and Engineering: A, 444(1-2):184-191.

[16]LiangDL, LiuJZ, ZhouYN, et al., 2017. Ignition and combustion characteristics of molded amorphous boron under different oxygen pressures. Acta Astronautica, 138:‍118-128.

[17]LiuLL, HeGQ, WangYH, et al., 2015. Chemical analysis of primary combustion products of boron-based fuel-rich propellant. RSC Advances, 5(123):101416-101426.

[18]LiuLL, HeGQ, WangYH, et al., 2017. Factors affecting the primary combustion products of boron-based fuel-rich propellants. Journal of Propulsion and Power, 33(2):333-337.

[19]LvZ, XiaZX, LiuB, et al., 2017. Preliminary experimental study on solid-fuel rocket scramjet combustor. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 18(2):106-112.

[20]MeerovD, MonogarovK, BraginA, et al., 2015. Boron particles agglomeration and slag formation during combustion of energetic condensed systems. Physics Procedia, 72:85-88.

[21]MiXC, GoroshinS, HigginsAJ, et al., 2013. Dual-stage ignition of boron particle agglomerates. Combustion and Flame, 160(11):2608-2618.

[22]MillotF, RiffletJC, Sarou-KanianV, et al., 2002. High-temperature properties of liquid boron from contactless techniques. International Journal of Thermophysics, 23(5):1185-1195.

[23]RouxJA, ChoiJ, ShakyaN, 2014. Parametric scramjet cycle analysis for nonideal mass flow rate. Journal of Thermophysics and Heat Transfer, 28(1):166-171.

[24]SmolanoffJ, Sowa-ResatM, ŁapickiA, et al., 1996. Kinetic parameters for heterogenous boron combustion reactions via the Cluster Beam approach. Combustion and Flame, 105(1-2):68-79.

[25]SongQG, CaoW, WeiX, et al., 2021. Laser ignition and combustion characteristics of micro- and nano-sized boron under different atmospheres and pressures. Combustion and Flame, 230:111420.

[26]SunYL, RenH, DuFZ, et al., 2018. Preparation and characterization of sintered B/MgB2 as heat release material. Journal of Alloys and Compounds, 759:100-107.

[27]SunYL, RenH, JiaoQJ, et al., 2020. Oxidation, ignition and combustion behaviors of differently prepared boron-magnesium composites. Combustion and Flame, 221:11-19.

[28]UlasA, KuoKK, GotzmerC, 2001. Ignition and combustion of boron particles in fluorine-containing environments. Combustion and Flame, 127(1-2):1935-1957.

[29]YetterRA, RabitzH, DryerFL, et al., 1991. Kinetics of high-temperature B/O/H/C chemistry. Combustion and Flame, 83(1-2):43-62.

[30]YoshidaT, YuasaS, 2000. Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream. Proceedings of the Combustion Institute, 28(2):2735-2741.

[31]YuasaS, IsodaH, 1991. Ignition and combustion of small boron lumps in an oxygen stream. Combustion and Flame, 86(3):216-222.

[32]ZhangH, WangNF, WuZW, 2020. Effect of fuel grain configuration on the thrust of a solid-fuel scramjet. Aerospace Science and Technology, 106:106145.

[33]ZhouW, 1998. Numerical Study of Multi-Phase Combustion: Ignition and Combustion of an Isolated Boron Particle in Fluorinated Environments. PhD Thesis, Princeton University, Princeton, USA.

[34]ZhouW, YetterRA, DryerFL, et al., 1998. Effect of fluorine on the combustion of “clean” surface boron particles. Combustion and Flame, 112(4):507-521.

[35]ZhouW, YetterRA, DryerFL, et al., 1999. Multi-phase model for ignition and combustion of boron particles. Combustion and Flame, 117(1-2):227-243.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE