CLC number:
On-line Access: 2022-12-15
Received: 2022-05-18
Revision Accepted: 2022-10-20
Crosschecked: 2022-12-15
Cited: 0
Clicked: 348
Shuai JIANG, Wenyuan ZHANG, Yuanqiang LU. Development and validation of novel inflammatory response-related gene signature for sepsis prognosis[J]. Journal of Zhejiang University Science B, 2022, 23(5): 1028-1041. @article{title="Development and validation of novel inflammatory response-related gene signature for sepsis prognosis", %0 Journal Article TY - JOUR
构建和验证与脓毒症预后相关的新的炎症反应相关基因标记1浙江大学医学院第一附属医院急诊科,中国杭州市,310003 2浙江省增龄与理化损伤性疾病诊治研究重点实验室,中国杭州市,310003 3浙江大学医学院第一附属医院麻醉科与重症监护室,中国杭州市,310003 目的:探讨免疫反应相关的基因(inflammatory response-related genes,IRRGs)在预测脓毒症患者生存预后中的作用。 创新点:鉴定与脓毒症生存预后密切相关的IRRGs,构建风险评分模型。 方法:对Gene Expression Omnibus(GEO)数据库中478例脓毒症患者的微阵列芯片数据进行综合生物信息学分析,利用least absolute shrinkage and selectionoperator(LASSO)-Cox回归分析筛选与脓毒症28天生存率密切相关的IRRGs,并以此构建脓毒症预后风险评分模型。使用受试者工作特征曲线(ROC)及生存曲线(基于Kaplan-Meier法)评估预后风险评分模型的预测效能及区分度,并用GSE95233数据集进行验证。 结论:利用9个IRRGs构建了与脓毒症28天生存预后有关的风险评估模型,且在GSE95233数据集中进行验证,证实这些IRRGs可作为脓毒症患者的预后生物标志物。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Andaluz-OjedaD, BobilloF, IglesiasV, et al., 2012. A combined score of pro- and anti-inflammatory interleukins improves mortality prediction in severe sepsis. Cytokine, 57(3):332-336. ![]() [2]BarrettT, WilhiteSE, LedouxP, et al., 2013. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res, 41(D1):D991-D995. ![]() [3]BauerJW, BilgicH, BaechlerEC, 2009. Gene-expression profiling in rheumatic disease: tools and therapeutic potential. Nat Rev Rheumatol, 5(5):257-265. ![]() [4]BosmannM, WardPA, 2013. The inflammatory response in sepsis. Trends Immunol, 34(3):129-136. ![]() [5]BourasM, AsehnouneK, RoquillyA, 2018. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia. Front Immunol, 9:2590. ![]() [6]CuocoloR, CarusoM, PerilloT, et al., 2020. Machine learning in oncology: a clinical appraisal. Cancer Lett, 481:55-62. ![]() [7]Darash-YahanaM, GillespieJW, HewittSM, et al., 2009. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS ONE, 4(8):e6695. ![]() [8]DelanoMJ, WardPA, 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev, 274(1):330-353. ![]() [9]DemaretJ, VenetF, FriggeriA, et al., 2015. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. J Leukoc Biol, 98(6):1081-1090. ![]() [10]DengZL, ZhouDZ, CaoSJ, et al., 2022. Development and validation of an inflammatory response-related gene signature for predicting the prognosis of pancreatic adenocarcinoma. Inflammation, 45(4):1732-1751. ![]() [11]EvansL, RhodesA, AlhazzaniW, et al., 2021. Executive summary: Surviving Sepsis Campaign: International Guidelines for the Management of Sepsis and Septic Shock 2021. Crit Care Med, 49(11):1974-1982. ![]() [12]FengAL, MaWL, FarajR, et al., 2021. Identification of S1PR3 gene signature involved in survival of sepsis patients. BMC Med Genomics, 14:43. ![]() [13]FleischmannC, ScheragA, AdhikariNKJ, et al., 2016. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med, 193(3):259-272. ![]() [14]Fleischmann-StruzekC, MellhammarL, RoseN, et al., 2020. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med, 46(8):1552-1562. ![]() [15]GottsJE, MatthayMA, 2016. Sepsis: pathophysiology and clinical management. BMJ, 353:i1585. ![]() [16]HannaMOF, AbdelhameedAM, Abou-ElallaAA, et al., 2019. Neutrophil and monocyte receptor expression in patients with sepsis: implications for diagnosis and prognosis of sepsis. Pathog Dis, 77(6):ftz055. ![]() [17]HänzelmannS, CasteloR, GuinneyJ, 2013. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14:7. ![]() [18]HeWX, XiaoK, FangM, et al., 2021. Immune cell number, phenotype, and function in the elderly with sepsis. Aging Dis, 12(1):277-296. ![]() [19]HelmkeA, NordlohneJ, BalzerMS, et al., 2019. CX3CL1‒CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Kidney Int, 95(6):1405-1417. ![]() [20]HotchkissRS, MonneretG, PayenD, 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol, 13(12):862-874. ![]() [21]ItagakiK, KaczmarekE, KwonWY, et al., 2020. Formyl peptide receptor-1 blockade prevents receptor regulation by mitochondrial danger-associated molecular patterns and preserves neutrophil function after trauma. Crit Care Med, 48(2):e123-e132. ![]() [22]JensenIJ, WinbornCS, FosdickMG, et al., 2018. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog, 14(10):e1007405. ![]() [23]JuAJ, TangJZ, ChenSH, et al., 2021. Pyroptosis-related gene signatures can robustly diagnose skin cutaneous melanoma and predict the prognosis. Front Oncol, 11:709077. ![]() [24]KolaczkowskaE, KubesP, 2013. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 13(3):159-175. ![]() [25]KorbeckiJ, SimińskaD, KojderK, et al., 2020. Fractalkine/CX3CL1 in neoplastic processes. Int J Mol Sci, 21(10):3723. ![]() [26]KriplaniA, PanditS, ChawlaA, et al., 2022. Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and lymphocyte-monocyte ratio (LMR) in predicting systemic inflammatory response syndrome (SIRS) and sepsis after percutaneous nephrolithotomy (PNL). Urolithiasis, 50(3):341-348. ![]() [27]LevyMM, EvansLE, RhodesA, 2018. The surviving sepsis campaign bundle: 2018 update. Crit Care Med, 46(6):997-1000. ![]() [28]LiberzonA, BirgerC, ThorvaldsdóttirH, et al., 2015. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst, 1(6):417-425. ![]() [29]LuJQ, LiuJY, LiA, 2022. Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(6):437-450. ![]() [30]MarkwartR, SaitoH, HarderT, et al., 2020. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med, 46(8):1536-1551. ![]() [31]MiyataK, YotsumotoF, NamSO, et al., 2012. Regulatory mechanisms of the HB-EGF autocrine loop in inflammation, homeostasis, development and cancer. Anticancer Res, 32(6):2347-2352. ![]() [32]NiCM, LingBY, XuX, et al., 2020. CX3CR1 contributes to streptozotocin-induced mechanical allodynia in the mouse spinal cord. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(2):166-171. ![]() [33]PanklaR, BuddhisaS, BerryM, et al., 2009. Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis. Genome Biol, 10(11):R127. ![]() [34]PattenM, BünemannJ, ThomaB, et al., 2002. Endotoxin induces desensitization of cardiac endothelin-1 receptor signaling by increased expression of RGS4 and RGS16. Cardiovasc Res, 53(1):156-164. ![]() [35]RaspéC, HöcherlK, RathS, et al., 2013. NF-κB-mediated inverse regulation of fractalkine and CX3CR1 during CLP-induced sepsis. Cytokine, 61(1):97-103. ![]() [36]ReinhartK, BauerM, RiedemannNC, et al., 2012. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev, 25(4):609-634. ![]() [37]RheeC, DantesR, EpsteinL, et al., 2017. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA, 318(13):1241-1249. ![]() [38]RhodesA, EvansLE, AlhazzaniW, et al., 2017. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med, 43(3):304-377. ![]() [39]RichJT, NeelyJG, PanielloRC, et al., 2010. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg, 143(3):331-336. ![]() [40]RobinX, TurckN, HainardA, et al., 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12:77. ![]() [41]RuanL, ChenGY, LiuZ, et al., 2018. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: a meta-analysis and systematic review. Crit Care, 22:316. ![]() [42]SchlattererK, BeckC, SchoppmeierU, et al., 2021a. Acetate sensing by GPR43 alarms neutrophils and protects from severe sepsis. Commun Biol, 4:928. ![]() [43]SchlattererK, PeschelA, KretschmerD, 2021b. Short-chain fatty acid and FFAR2 activation—a new option for treating infections? Front Cell Infect Microbiol, 11:785833. ![]() [44]SciclunaBP, KlouwenbergPMCK, van VughtLA, et al., 2015. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am J Respir Crit Care Med, 192(7):826-835. ![]() [45]SilwalP, KimJK, KimYJ, et al., 2020. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection. Front Immunol, 11:1649. ![]() [46]SingerM, DeutschmanCS, SeymourCW, et al., 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315(8):801-810. ![]() [47]SubramanianA, TamayoP, MoothaVK, et al., 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102(43):15545-15550. ![]() [48]van der PollT, van de VeerdonkFL, SciclunaBP, et al., 2017. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol, 17(7):407-420. ![]() [49]VenetF, MonneretG, 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol, 14(2):121-137. ![]() [50]VenetF, SchillingJ, CazalisMA, et al., 2017. Modulation of LILRB2 protein and mRNA expressions in septic shock patients and after ex vivo lipopolysaccharide stimulation. Hum Immunol, 78(5-6):441-450. ![]() [51]WatanabeN, SuzukiY, InokuchiS, et al., 2016. Sepsis induces incomplete M2 phenotype polarization in peritoneal exudate cells in mice. J Intensive Care, 4:6. ![]() [52]WedepohlS, Beceren-BraunF, RieseS, et al., 2012. L-Selectin‒a dynamic regulator of leukocyte migration. Eur J Cell Biol, 91(4):257-264. ![]() [53]WintersBD, EberleinM, LeungJ, et al., 2010. Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med, 38(5):1276-1283. ![]() [54]XiaoZJ, LiJY, YuQ, et al., 2021. An inflammatory response related gene signature associated with survival outcome and gemcitabine response in patients with pancreatic ductal adenocarcinoma. Front Pharmacol, 12:778294. ![]() [55]XuF, ZhouFC, 2020. Inhibition of microRNA-92a ameliorates lipopolysaccharide-induced endothelial barrier dysfunction by targeting ITGA5 through the PI3K/Akt signaling pathway in human pulmonary microvascular endothelial cells. Int Immunopharmacol, 78:106060. ![]() [56]ZhongWW, WangDJ, YaoB, et al., 2021. Integrative analysis of prognostic long non-coding RNAs with copy number variation in bladder cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(8):664-681. ![]() [57]ZouWJ, ChenL, MaoWW, et al., 2021. Identification of inflammatory response-related gene signature associated with immune status and prognosis of lung adenocarcinoma. Front Bioeng Biotechnol, 9:772206. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>