Full Text:  <253>

Suppl. Mater.: 

Summary:  <139>

CLC number: 

On-line Access: 2023-12-08

Received: 2023-03-23

Revision Accepted: 2023-08-09

Crosschecked: 2023-12-12

Cited: 0

Clicked: 252

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism


Author(s):  Pengfei GAO, Wentao ZHANG, Yujie LIN, Ruijie LU, Zijian LOU, Gang LU, Ruolang PAN, Yunfang CHEN

Affiliation(s):  Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; more

Corresponding email(s):  panrl@zju.edu.cn, chenyunfang@hmc.edu.cn

Key Words:  luteolin, oral cancer, proliferation, P53-PLK1 signaling, energy metabolism, anti-cancer


Share this article to: More <<< Previous Paper|Next Paper >>>

Pengfei GAO, Wentao ZHANG, Yujie LIN, Ruijie LU, Zijian LOU, Gang LU, Ruolang PAN, Yunfang CHEN. Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300200

@article{title="Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism",
author="Pengfei GAO, Wentao ZHANG, Yujie LIN, Ruijie LU, Zijian LOU, Gang LU, Ruolang PAN, Yunfang CHEN",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2300200"
}

%0 Journal Article
%T Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism
%A Pengfei GAO
%A Wentao ZHANG
%A Yujie LIN
%A Ruijie LU
%A Zijian LOU
%A Gang LU
%A Ruolang PAN
%A Yunfang CHEN
%J Journal of Zhejiang University SCIENCE B
%P 1151-1158
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2300200"

TY - JOUR
T1 - Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism
A1 - Pengfei GAO
A1 - Wentao ZHANG
A1 - Yujie LIN
A1 - Ruijie LU
A1 - Zijian LOU
A1 - Gang LU
A1 - Ruolang PAN
A1 - Yunfang CHEN
J0 - Journal of Zhejiang University Science B
SP - 1151
EP - 1158
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2300200"


Abstract: 
Oral squamous cell carcinoma (OSCC) is a prevalent malignant tumor affecting the head and neck region (Leemans et al., 2018). It is often diagnosed at a later stage, leading to a poor prognosis (Muzaffar et al., 2021; Li et al., 2023). Despite advances in OSCC treatment, the overall 5-year survival rate of OSCC patients remains alarmingly low, falling below 50% (Jehn et al., 2019; Johnson et al., 2020). According to statistics, only 50% of patients with oral cancer can be treated with surgery. Once discovered, it is more frequently at an advanced stage. In addition, owing to the aggressively invasive and metastatic characteristics of OSCC, most patients die within one year of diagnosis. Hence, the pursuit of novel therapeutic drugs and treatments to improve the response of oral cancer to medication, along with a deeper understanding of their effects, remains crucial objectives in oral cancer research (Johnson et al., 2020; Bhat et al., 2021; Chen et al., 2023; Ruffin et al., 2023).

木犀草素通过调节PLK1表达和细胞能量代谢抑制口腔癌细胞OC3的生长和迁移

高鹏飞1,2,张文涛1,林宇杰3,卢睿杰3,楼子健3,卢刚4,潘若浪4,陈云芳1,2
1浙江省人民医院,杭州医学院附属人民医院口腔科整形重建外科中心,中国杭州市,310014
2蚌埠医学院口腔医学院,中国蚌埠市,233030
3温州医科大学附属第二临床医学院,中国温州市,325035
4浙江省细胞药物与应用技术研究重点实验室,中国杭州市,311122
摘要:尽管木犀草素的抗癌作用已在多种肿瘤模型中报道,但关于其在口腔癌中的作用研究鲜少。本研究探讨了木犀草素对口腔癌细胞OC3生长和迁移的影响及其机制。结果表明,木犀草素能够抑制或下调OC3细胞的增殖、细胞周期以及p53-Ser15(P)和polo样激酶1(PLK1)蛋白水平。耗氧率(OCR)和胞外酸化率(ECAR)水平以及ATP产量也显著降低。Transwell试验进一步证实OC3细胞的迁移能力会受到木犀草素的影响。综上,本研究发现木犀草素能抑制口腔癌细胞OC3的增殖,其机制可能与p53-PLK1信号传导下调和细胞能量代谢降低有关。

关键词组:木犀草素;口腔癌;增殖;p53-PLK1信号通路;能量代谢;抗癌

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Al-IshaqRK, AbotalebM, KubatkaP, et al., 2019. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9):430.

[2]BhatAA, YousufP, WaniNA, et al., 2021. Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Sig Transduct Target Ther, 6:12.

[3]BhusalCK, UtiDE, MukherjeeD, et al., 2023. Unveiling Nature’s potential: promising natural compounds in Parkinson’s disease management. Parkinsonism Relat Disord, 115:105799.

[4]ChenP, ZhangJY, ShaBB, et al., 2017. Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Oncotarget, 8(16):27471-27480.

[5]ChenQM, WangYH, ShuaiJ, 2023. Current status and future prospects of stomatology research. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(10):853-867.

[6]CookMT, 2018. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer (Dove Med Press), 10:89-100.

[7]DavellaR, MamidalaE, 2021. Luteolin: a potential multiple targeted drug effectively inhibits diabetes mellitus protein targets. J Pharm Res Int, 33(44B):161-171.

[8]FangJ, ZhouQ, ShiXL, et al., 2007. Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis, 28(3):713-723.

[9]FangXJ, YuSX, LuYL, et al., 2000. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA, 97(22):11960-11965.

[10]HanT, LiHL, ZhangQY, et al., 2007. Bioactivity-guided fractionation for anti-inflammatory and analgesic properties and constituents of Xanthium strumarium L. Phytomedicine, 14(12):825-829.

[11]HeZJ, LiXQ, WangZ, et al., 2023. Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer’s disease. Redox Biol, 66:102848.

[12]IidaK, NaikiT, Naiki-ItoA, et al., 2020. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci, 111(4):1165-1179.

[13]IliakiS, BeyaertR, AfoninaIS, 2021. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol, 193:114747.

[14]ImranM, RaufA, Abu-IzneidT, et al., 2019. Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother, 112:108612.

[15]JehnP, DittmannJ, ZimmererR, et al., 2019. Survival rates according to tumour location in patients with surgically treated oral and oropharyngeal squamous cell carcinoma. Anticancer Res, 39(5):2527-2533.

[16]JohnsonDE, BurtnessB, LeemansCR, et al., 2020. Head and neck squamous cell carcinoma. Nat Rev Dis Primers, 6:92.

[17]KangKA, PiaoMJ, RyuYS, et al., 2017. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol, 51(4):1169-1178.

[18]LakheraS, RanaM, DevlalK, et al., 2022. A comprehensive exploration of pharmacological properties, bioactivities and inhibitory potentiality of luteolin from Tridax procumbens as anticancer drug by in-silico approach. Struct Chem, 33(3):703-719.

[19]LeemansCR, SnijdersPJF, BrakenhoffRH, 2018. The molecular landscape of head and neck cancer. Nat Rev Cancer, 18(5):269-282.

[20]LiQF, TieY, AluA, et al., 2023. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Sig Transduct Target Ther, 8:31.

[21]LiangGH, ZhaoJL, DouYX, et al., 2022. Mechanism and experimental verification of Luteolin for the treatment of osteoporosis based on network pharmacology. Front Endocrinol, 13:866641.

[22]LimW, YangC, BazerFW, et al., 2016. Luteolin inhibits proliferation and induces apoptosis of human placental choriocarcinoma cells by blocking the PI3K/AKT pathway and regulating sterol regulatory element binding protein activity. Biol Reprod, 95(4):82.

[23]LinD, KuangG, WanJY, et al., 2017. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol Rep, 37(2):895-902.

[24]LinSC, LiuCJ, ChiuCP, et al., 2004. Establishment of OC3 oral carcinoma cell line and identification of NF‍-‍κB activation responses to areca nut extract. J Oral Pathol Med, 33(2):79-86.

[25]LinY, ShiRX, WangX, et al., 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets, 8(7):634-646.

[26]Lopez-LazaroM, 2009. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem, 9(1):31-59.

[27]MaoYJ, MengLK, LiuHY, et al., 2022. Therapeutic potential of traditional Chinese medicine for vascular endothelial growth factor. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(5):353-364.

[28]MuruganathanN, DhanapalAR, BaskarV, et al., 2022. Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: a review. Metabolites, 12(11):1145.

[29]MuzaffarJ, BariS, KirtaneK, et al., 2021. Recent advances and future directions in clinical management of head and neck squamous cell carcinoma. Cancers, 13(2):338.

[30]NabaviSF, BraidyN, GortziO, et al., 2015. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull, 119(Part A):1-11.

[31]NaiaL, PinhoCM, DentoniG, et al., 2021. Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biol, 19:57.

[32]PanduranganAK, DharmalingamP, SadagopanSKA, et al., 2013. Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/β-catenin/GSK-3β signaling. J Environ Pathol Toxicol Oncol, 32(2):131-139.

[33]PotočnjakI, ŠimićL, GobinI, et al., 2020. Antitumor activity of luteolin in human colon cancer SW620 cells is mediated by the ERK/FOXO3a signaling pathway. Toxicol Vitro, 66:104852.

[34]PuYS, ZhangT, WangJH, et al., 2018. Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs. J Cancer, 9(20):3669-3675.

[35]RehfeldtSCH, SilvaJ, AlvesC, et al., 2022. Neuroprotective effect of luteolin-7-O-glucoside against 6-OHDA-induced damage in undifferentiated and RA-differentiated SH-SY5Y cells. Int J Mol Sci, 23(6):2914.

[36]Reyes-FariasM, Carrasco-PozoC, 2019. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci, 20(13):3177.

[37]RuffinAT, LiH, VujanovicL, et al., 2023. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer, 23(3):173-188.

[38]SeelingerG, MerfortI, WölfleU, et al., 2008a. Anti-carcinogenic effects of the flavonoid luteolin. Molecules, 13(10):2628-2651.

[39]SeelingerG, MerfortI, SchemppCM, 2008b. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med, 74(14):1667-1677.

[40]SunBY, LiuYQ, HeDH, et al., 2021. Traditional Chinese medicines and their active ingredients sensitize cancer cells to TRAIL-induced apoptosis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(3):190-203.

[41]TuorkeyMJ, 2016. Molecular targets of luteolin in cancer. Eur J Cancer Prev, 25(1):65-76.

[42]WangGG, LuXH, LiW, et al., 2011. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Alternat Med, 2011:323171.

[43]WangHT, YaoXQ, HuangKL, et al., 2022. Low-dose dexamethasone in combination with luteolin improves myocardial infarction recovery by activating the antioxidative response. Biomed Pharmacother, 151:113121.

[44]ZhangWB, LiDB, ShanY, et al., 2023. Luteolin intake is negatively associated with all-cause and cardiac mortality among patients with type 2 diabetes mellitus. Diabetol Metab Syndr, 15:59.

[45]ZhouZ, ChenJ, ZhangZX, et al., 2022. Solubilization of luteolin in PVP40 solid dispersion improves inflammation-induced insulin resistance in mice. Eur J Pharm Sci, 174:106188.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE