CLC number:
On-line Access: 2024-05-10
Received: 2023-04-06
Revision Accepted: 2023-08-07
Crosschecked: 2024-05-10
Cited: 0
Clicked: 816
Yu ZHANG, Xinliang GU, Yang LI, Xun LI, Yuejiao HUANG, Shaoqing JU. Transfer RNA-derived fragment tRF-23-Q99P9P9NDD promotes progression of gastric cancer by targeting ACADSB[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300215 @article{title="Transfer RNA-derived fragment tRF-23-Q99P9P9NDD promotes progression of gastric cancer by targeting ACADSB", %0 Journal Article TY - JOUR
转移RNA衍生片段tRF-23-Q99P9P9NDD通过靶向ACADSB促进胃癌进展1南通大学医学院, 南通大学, 中国南通市, 226001 2南通大学附属医院检验科, 中国南通市, 226001 3南通大学附属医院临床医学研究中心, 中国南通市, 226001 4南通大学附属医院肿瘤科, 中国南通市, 226001 摘要:胃癌(GC)是最常见的胃肠道肿瘤之一。作为一种新型的非编码RNA,转移RNA(tRNA)衍生的小RNA(tsRNA)在肿瘤中发挥着双重生物学作用。我们之前的研究揭示了tRF-23-Q99P9P9NDD作为GC诊断和预后生物标志物的潜力。在本研究中,我们首次证实了tRF-23-Q99P9P9NDD能够促进GC细胞的增殖、迁移和侵袭。双荧光素酶报告基因实验证实tRF-23-Q99P9P9NDD可以结合短/支链酰基辅酶A脱氢酶(ACADSB)的3’非编码区(UTR)位点。此外,ACADSB可以挽救tRF-23-Q99P9P9NDD对GC细胞的影响。随后,我们使用基因本体论(GO)、京都基因和基因组百科全书(KEGG)以及基因集富集分析(GSEA)发现,GC中下调的ACADSB可能通过抑制脂肪酸分解代谢和铁死亡来促进脂质积累。最后,我们在转录水平上验证了ACADSB和12个铁死亡基因之间的相关性,并通过流式细胞仪检测了活性氧(ROS)水平的变化。综上,本研究提出tRF-23-Q99P9P9NDD可能通过靶向ACADSB影响GC脂质代谢和铁死亡,从而促进GC进展。这为GC的诊断和预后监测价值提供了理论基础,并为治疗开辟了新的可能性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]CarracedoA, CantleyLC, PandolfiPP, 2013. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer, 13(4):227-232. [2]CorreaP, 2013. Gastric cancer: overview. Gastroenterol Clin North Am, 42(2):211-217. [3]di FazioA, GullerovaM, 2023. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology. Br J Cancer, 128(9):1625-1635. [4]EricksenRE, LimSL, McdonnellE, et al., 2019. Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression. Cell Metab, 29(5):1151-1165.e6. [5]FalconiM, GiangrossiM, ZabaletaME, et al., 2019. A novel 3'-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin. FASEB J, 33(12):13228-13240. [6]HanY, PengYH, LiuSS, et al., 2022. tRF3008A suppresses the progression and metastasis of colorectal cancer by destabilizing FOXK1 in an AGO-dependent manner. J Exp Clin Cancer Res, 41:32. [7]HausseckerD, HuangY, LauA, et al., 2010. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA, 16(4):673-695. [8]HsiehLC, LinSI, ShihACC, et al., 2009. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol, 151(4):2120-2132. [9]HuangBQ, YangHP, ChengXX, et al., 2017. tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer. Cancer Res, 77(12):3194-3206. [10]KimHK, FuchsG, WangSC, et al., 2017. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 552(7683):57-62. [11]KumarP, KuscuC, DuttaA, 2016. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci, 41(8):679-689. [12]LaiSW, KuoYH, LiaoKF, 2020. Statin therapy and gastric cancer death. Postgrad Med J, 96(1133):178. [13]LiJ, ZhuL, ChengJ, et al., 2021. Transfer RNA-derived small RNA: a rising star in oncology. Semin Cancer Biol, 75:29-37. [14]LiXZ, LiuXY, ZhaoDZ, et al., 2021. tRNA-derived small RNAs: novel regulators of cancer hallmarks and targets of clinical application. Cell Death Discov, 7:249. [15]LiuBW, CaoJL, WangXY, et al., 2021. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis, 13:24. [16]LiuXH, ZhangWY, WangHR, et al., 2022. Decreased expression of ACADSB predicts poor prognosis in clear cell renal cell carcinoma. Front Oncol, 11:762629. [17]LuD, YangZY, XiaQY, et al., 2020. ACADSB regulates ferroptosis and affects the migration, invasion, and proliferation of colorectal cancer cells. Cell Biol Int, 44(11):2334-2343. [18]LuanN, MuYL, MuJY, et al., 2021. Dicer1 promotes colon cancer cell invasion and migration through modulation of tRF-20-MEJB5Y13 expression under hypoxia. Front Genet, 12:638244. [19]ParkEJ, KimTH, 2018. Fine-tuning of gene expression by tRNA-derived fragments during abiotic stress signal transduction. Int J Mol Sci, 19(2):518. [20]QuL, HeXY, TangQ, et al., 2022. Iron metabolism, ferroptosis, and lncRNA in cancer: knowns and unknowns. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):844-862. [21]QuYY, ZhaoR, ZhangHL, et al., 2020. Inactivation of the AMPK-GATA3-ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Cancer Res, 80(2):319-333. [22]RozenR, VockleyJ, ZhouLB, et al., 1994. Isolation and expression of a cDNA encoding the precursor for a novel member (ACADSB) of the acyl-CoA dehydrogenase gene family. Genomics, 24(2):280-287. [23]ShenL, ShanYS, HuHM, et al., 2013. Management of gastric cancer in Asia: resource-stratified guidelines. Lancet Oncol, 14(12):e535-e547. [24]StockwellBR, AngeliJPF, BayirH, et al., 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171(2):273-285. [25]SungH, FerlayJ, SiegelRL, et al., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3):209-249. [26]TaoEW, ChengWY, LiWL, et al., 2020. tiRNAs: a novel class of small noncoding RNAs that helps cells respond to stressors and plays roles in cancer progression. J Cell Physiol, 235(2):683-690. [27]TorresAG, ReinaO, Stephan-Otto AttoliniC, et al., 2019. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. Proc Natl Acad Sci USA, 116(17):8451-8456. [28]WenJT, HuangZH, LiQH, et al., 2021. Research progress on the tsRNA classification, function, and application in gynecological malignant tumors. Cell Death Discov, 7:388. [29]XuDD, QiaoDQ, LeiYL, et al., 2022. Transfer RNA-derived small RNAs (tsRNAs): versatile regulators in cancer. Cancer Lett, 546:215842. [30]YangM, MoYZ, RenDX, et al., 2023. Transfer RNA-derived small RNAs in tumor microenvironment. Mol Cancer, 22:32. [31]ZhangY, GuXL, QinXY, et al., 2022. Evaluation of serum tRF-23-Q99P9P9NDD as a potential biomarker for the clinical diagnosis of gastric cancer. Mol Med, 28:63. [32]ZhouK, DiebelKW, HolyJ, et al., 2017. A tRNA fragment, tRF5-Glu, regulates BCAR3 expression and proliferation in ovarian cancer cells. Oncotarget, 8(56):95377-95391. [33]ZhouN, BaoJK, 2020. FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database, 2020:baaa021. Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>