CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-02-02
Cited: 0
Clicked: 824
Citations: Bibtex RefMan EndNote GB/T7714
Yi ZHANG, Zhiyan QUAN, Feiyang LOU, Yujiao FANG, Garth J. THOMPSON, Gao CHEN, Xiaotong ZHANG. A proton birdcage coil integrated with interchangeable single loops for multi-nuclear MRI/MRS[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300587 @article{title="A proton birdcage coil integrated with interchangeable single loops for multi-nuclear MRI/MRS", %0 Journal Article TY - JOUR
一种用于多核磁共振成像及波谱的鸟笼线圈与可更换单环线圈的一体化设计1浙江大学医学院附属第二医院神经外科,中国杭州市,310009 2浙江省神经外科疾病精准诊治及临床转化重点实验室,中国杭州市,310009 3浙江大学教育部脑与脑机融合前沿科学中心,中国杭州市,310058 4浙江大学系统神经与认知科学研究所,中国杭州市,310027 5浙江大学医学院,中国杭州市,310020 6上海科技大学iHuman研究所,中国上海市,201210 7浙江大学电气工程学院,中国杭州市,310027 摘要:能量代谢对生命活动至关重要,主要包括对碳水化合物、脂肪和蛋白质的利用过程,异常的能量代谢与诸多疾病密切相关。本研究提出了一种用于多核磁共振成像(MRI)与波谱(MRS)的射频线圈设计:通过3D打印线圈外壳和支架,将一个鸟笼1H线圈和可更换的单环X核(2H、13C、23Na和31P)线圈一体化集成,其中单环线圈通过一个弧形支架安装于鸟笼线圈内壁,使其可沿内壁轴向无阻碍地移动,方便实现成像实验中多核线圈的更换以及线圈相对于不同成像体的摆放。与商用鸟笼1H核线圈相比,本设计具有更好的1H信号激发均匀性和成像信噪比;小鼠的活体实验验证了线圈设计在成像与波谱研究方面的可行性与有效性,可同时满足结构成像和能量代谢检测的要求。综上所述,该多核线圈通过新型机械与电路设计可以简化多核磁共振成像能量代谢检测的实施过程。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbdurrachimD,NabbenM,HoerrV,et al.,2017.Diabeticdb/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.Cardiovasc Res,113(10):1148-1160. [2]AlfonsettiM,SotgiuA,AlecciM,2010.Design and testing of a 1.5 Tesla double-tuned (1H/31P) RF surface coil with intrinsic geometric isolation.Measurement,43(9):1266-1276. [3]Al-MosalemOA,El-AnsaryA,AttasO,et al.,2009.Metabolic biomarkers related to energy metabolism in Saudi autistic children.Clin Biochem,42(10-11):949-957. [4]AugathM,HeilerP,KirschS,et al.,2009.In vivo39K,23Na and1H MR imaging using a triple resonant RF coil setup.J Magn Reson,200(1):134-136. [5]BatsiosG,TaglangC,TranM,et al.,2022.Deuterium metabolic imaging reports on TERT expression and early response to therapy in cancer.Clin Cancer Res,28(16):3526-3536. [6]BeyoğluD,ImbeaudS,MaurhoferO,et al.,2013.Tissue metabolomics of hepatocellular carcinoma: tumor energy metabolism and the role of transcriptomic classification.Hepatology,58(1):229-238. [7]CaniPD,DelzenneNM,2009.The role of the gut microbiota in energy metabolism and metabolic disease.Curr Pharm Des,15(13):1546-1558. [8]CherrySR,JonesT,KarpJS,et al.,2018.Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care.J Nucl Med,59(1):3-12. [9]ChoiCH,HaY,VeeraiahP,et al.,2016.Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals.J Magn Reson,273:28-32. [10]ChoiCH,HongSM,HaY,et al.,2017.Design and construction of a novel1H/19F double-tuned coil system using PIN-diode switches at 9.4T.J Magn Reson,279:11-15. [11]ChoiCH,HongSM,FelderJ,et al.,2020.The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: a review.Magn Reson Imaging,72:103-116. [12]DeelchandDK,ShestovAA,KoskiDM,et al.,2009.Acetate transport and utilization in the rat brain.J Neurochem,109(Suppl 1):46-54. [13]de FeyterHM,de GraafRA,2021.Deuterium metabolic imaging ‒ Back to the future. J Magn Reson,326:106932. [14]de FeyterHM,BeharKL,CorbinZA,et al.,2018.Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo.Sci Adv,4(8):eaat7314. [15]EliaM,CummingsJH,2007.Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates.Eur J Clin Nutr,61:S40-S74. [16]FerreiraIL,ResendeR,FerreiroE,et al.,2010.Multiple defects in energy metabolism in Alzheimers disease.Curr Drug Targets,11(10):1193-1206. [17]GareisD,NeubergerT,BehrVC,et al.,2006.Transmit-receive coil-arrays at17.6T, configurations for 1H, 23Na, and 31P MRI.Concepts Magn Reson Part B Magn Reson Eng,29B(1):20-27. [18]GruetterR,AdrianyG,ChoiIY,et al.,2003.Localizedin vivo 13C NMR spectroscopy of the brain.NMR Biomed,16(6-7):313-338. [19]HaY,ChoiCH,ShahNJ,2018.Development and implementation of a PIN-diode controlled, quadrature-enhanced, double-tuned RF coil for sodium MRI.IEEE Trans Med Imaging,37(7):1626-1631. [20]HernandezD,2021.Design of a coplanar interlayer gapped microstrips arrangement for multi-nuclei (1H,19F,31P, and23Na) applications in 7T MRI.Appl Sci,11(3):957. [21]HertzL,DienelGA,2002.Energy metabolism in the brain.Int Rev Neurobiol,51:1-102, IN1-IN4. [22]HorchRA,WilkensK,GochbergDF,et al.,2010.RF coil considerations for short-T2 MRI.Magn Reson Med,64(6):1652-1657. [23]ImamuraH,NhatKPH,TogawaH,et al.,2009.Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators.Proc Natl Acad Sci USA,106(37):15651-15656. [24]JamesJR,GaoY,SoonVC,et al.,2010.Controlled radio-frequency hyperthermia using an MR scanner and simultaneous monitoring of temperature and therapy response by1H,23Na and31P magnetic resonance spectroscopy in subcutaneously implanted 9L-gliosarcoma.Int J Hyperthermia,26(1):79-90. [25]KempGJ,MeyerspeerM,MoserE,2007.Absolute quantification of phosphorus metabolite concentrations in human musclein vivo by31P MRS: a quantitative review.NMR Biomed,20(6):555-565. [26]LongCP,AntoniewiczMR,2019.High-resolution13C metabolic flux analysis.Nat Protoc,14(10):2856-2877. [27]LopaschukGD,KarwiQG,TianR,et al.,2021.Cardiac energy metabolism in heart failure.Circ Res,128(10):1487-1513. [28]LuM,ZhuXH,ZhangY,et al.,2017.Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy.J Cereb Blood Flow Metab,37(11):3518-3530. [29]MagistrettiPJ,AllamanI,2015.A cellular perspective on brain energy metabolism and functional imaging.Neuron,86(4):883-901. [30]MedhurstL,ShahnazF,RamnarineN,et al.,2016.Measurement of phosphates in soft drinks: a general chemistry experiment using NMR. In: Soulsby D, Anna LJ, Wallner AS (Eds.),NMR Spectroscopy in the Undergraduate Curriculum:First Year and Organic Chemistry Courses Volume2.ACS Publications,Washington, p.31-37. [31]MergenthalerP,LindauerU,DienelGA,et al.,2013.Sugar for the brain: the role of glucose in physiological and pathological brain function.Trends Neurosci,36(10):587-597. [32]MiloneM,WongLJ,2013.Diagnosis of mitochondrial myopathies.Mol Genet Metab,110(1-2):35-41. [33]MirkesC,ShajanG,ChadzynskiG,et al.,2016.31P CSI of the human brain in healthy subjects and tumor patients at 9.4 T with a three-layered multi-nuclear coil: initial results.Magn Reson Mater Phys,29(3):579-589. [34]Moreno-SánchezR,Rodríguez-EnríquezS,Marín-HernándezA,et al.,2007.Energy metabolism in tumor cells.FEBS J,274(6):1393-1418. [35]NehrkeK,BörnertP,2012.DREAM—a novel approach for robust, ultrafast, multisliceB1 mapping.Magn Reson Med,68(5):1517-1526. [36]O'DonnellME,ChenYJ,LamTI,et al.,2013.Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood‒brain barrier Na/H exchanger. J Cereb Blood Flow Metab,33(2):225-234. [37]RenJM,SherryAD,MalloyCR,2015.31P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, andT1 relaxation times.NMR Biomed,28(11):1455-1462. [38]RoachPJ,2002.Glycogen and its metabolism.Curr Mol Med,2(2):101-120. [39]RobbinsNM,SwansonRA,2014.Opposing effects of glucose on stroke and reperfusion injury: acidosis, oxidative stress, and energy metabolism.Stroke,45(6):1881-1886. [40]RothmanDL,de GraafRA,HyderF,et al.,2019.In vivo13C and1H-[13C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer.NMR Biomed,32(10):e4172. [41]Scheuermann-FreestoneM,MadsenPL,MannersD,et al.,2003.Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes.Circulation,107(24):3040-3046. [42]ShapiroEM,BorthakurA,DandoraR,et al.,2000.Sodium visibility and quantitation in intact bovine articular cartilage using high field23Na MRI and MRS.J Magn Reson,142(1):24-31. [43]TaglangC,BatsiosG,MukherjeeJ,et al.,2022.Deuterium magnetic resonance spectroscopy enables noninvasive metabolic imaging of tumor burden and response to therapy in low-grade gliomas.Neuro Oncol,24(7):1101-1112. [44]ValkovičL,ChmelíkM,KrššákM,2017.In-vivo31P-MRS of skeletal muscle and liver: a way for non-invasive assessment of their metabolism.Anal Biochem,529:193-215. [45]von MorzeC,EngelbachJA,BlazeyT,et al.,2021.Comparison of hyperpolarized13C and non-hyperpolarized deuterium MRI approaches for imaging cerebral glucose metabolism at 4.7 T.Magn Reson Med,85(4):1795-1804. [46]WarburgO,1956.On respiratory impairment in cancer cells.Science,124(3215):269-270. [47]WeissN,HilairePBS,ColschB,et al.,2016.Cerebrospinal fluid metabolomics highlights dysregulation of energy metabolism in overt hepatic encephalopathy.J Hepatol,65(6):1120-1130. [48]ZhangXT,ZhangY,RoeAW,2021.Ultra-high-field MRI studies of brain structure and function in humans and nonhuman primates: a collaborative approach to precision medicine.Curr Opin Biomed Eng,20:100320. [49]ZhangY,GaoY,FangK,et al.,2022.Proton/deuterium magnetic resonance imaging of rodents at 9.4T using birdcage coils.Bioelectromagnetics,43(1):40-46. Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>