CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-10-18
Cited: 0
Clicked: 807
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-1350-2961
Yuyi ZHENG, Xiaojie CHEN, Yi WANG, Zhong CHEN, Di WU. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300839 @article{title="Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy", %0 Journal Article TY - JOUR
酚类纳米技术:治疗中枢神经系统疾病的新策略1浙江中医药大学药学院,浙江省神经药理学与转化研究重点实验室,中国杭州市,310053 2浙江中医药大学附属第三医院,中国杭州市,310009 摘要:酚类化合物因其良好的生物相容性和独特的理化性质,在生物医学领域受到极大关注。近年来,酚类纳米技术已成为医学领域的研究热点,特别是在中枢神经系统疾病的应用方面,已报道了许多具有广阔前景的研究成果。酚类化合物的优越性能包括抗炎、抗氧化、消炎、易透过血脑屏障,以及保护神经系统免受代谢损伤、促进学习和认知功能等。尽管这一领域已取得了巨大进展,但仍缺乏有关酚类纳米材料在中枢神经系统疾病治疗的全面综述。本文系统地总结了酚类纳米材料的基本理化性质和合成策略,以期满足进一步开发新型中枢神经系统疾病治疗方法的需求。本文首先介绍了酚类物质与其他物质的相互作用,它们可以通过不同的方式形成尺寸、形状、成分、表面化学性质和功能均可控的纳米材料。随后,本文对酚类纳米材料在中枢神经系统疾病治疗中的应用进行总结,以期为该领域后续的应用研究提供参考。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbbottNJ,PatabendigeAAK,DolmanDEM,et al.,2010.Structure and function of the blood‒brain barrier.Neurobiol Dis,37(1):13-25. [2]Abdal DayemA,ChoiHY,YangGM,et al.,2016.The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms.Nutrients,8(9):581. [3]AgostinisP,BergK,CengelKA,et al.,2011.Photodynamic therapy of cancer: an update.CA Cancer J Clin,61(4):250-281. [4]AiXZ,MuJ,XingBG,2016.Recent advances of light-mediated theranostics.Theranostics,6(13):2439-2457. [5]AmbekarRS,KandasubramanianB,2019.A polydopamine-based platform for anti-cancer drug delivery.Biomater Sci,7(5):1776-1793. [6]AppidiT,PemmarajuDB,KhanRA,et al.,2020.Light-triggered selective ROS-dependent autophagy by bioactive nanoliposomes for efficient cancer theranostics.Nanoscale,12(3):2028-2039. [7]ArnedosM,VicierC,LoiS,et al.,2015.Precision medicine for metastatic breast cancer‒limitations and solutions.Nat Rev Clin Oncol,12(12):693-704. [8]AvasthiA,CaroC,Pozo-TorresE,et al.,2020.Magnetic nanoparticles as MRI contrast agents.Top Curr Chem,378(3):40. [9]BattagliaL,PancianiPP,MuntoniE,et al.,2018.Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery.Expert Opin Drug Deliv,15(4):369-378. [10]BeghiE,GiussaniG,SanderJW,2015.The natural history and prognosis of epilepsy.Epileptic Disord,17(3):243-253. [11]BertranF,2018.Epilepsy today.Rev Infirm,67(243):14-16(in French). [12]Brglez MojzerE,Knez HrnčičM,ŠkergetM,et al.,2016.Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects.Molecules,21(7):901. [13]BrunoRM,GhiadoniL,2018.Polyphenols, antioxidants and the sympathetic nervous system.Curr Pharm Des,24(2):130-139. [14]ChenY,LuY,LeeRJ,et al.,2020.Nano encapsulated curcumin: and its potential for biomedical applications.Int J Nanomedicine,15:3099-3120. [15]ChengTJ,LiuJJ,RenJ,et al.,2016.Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance.Theranostics,6(9):1277-1292. [16]ChengW,ZengXW,ChenHZ,et al.,2019.Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine.ACS Nano,13(8):8537-8565. [17]CheynierV,Tomas-BarberanFA,YoshidaK,2015.Polyphenols: from plants to a variety of food and nonfood uses.J Agric Food Chem,63(35):7589-7594. [18]ChoS,ParkW,KimDH,2017.Silica-coated metal chelating-melanin nanoparticles as a dual-modal contrast enhancement imaging and therapeutic agent.ACS Appl Mater Interfaces,9(1):101-111. [19]ChungJE,TanSS,GaoSJ,et al.,2014.Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy.Nat Nanotechnol,9(11):907-912. [20]CiQQ,QinXF,LiuJH,et al.,2020.Mitochondria-targeted polydopamine nanoprobes for visualizing endogenous sulfur dioxide derivatives in a rat epilepsy model.Chem Commun,56(79):11823-11826. [21]CuiJW,YanY,SuchGK,et al.,2012.Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules.Biomacromolecules,13(8):2225-2228. [22]DagliaM,2012.Polyphenols as antimicrobial agents.Curr Opin Biotechnol,23(2):174-181. [23]DaiYL,ChengSY,WangZL,et al.,2018a.Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles.ACS Nano,12(1):455-463. [24]DaiYL,YangZ,ChengSY,et al.,2018b.Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles.Adv Mater,30(8):1704877. [25]DaleyMJ,MurthyMS,PetersonEJ,2015.Bleeding risk with systemic thrombolytic therapy for pulmonary embolism: scope of the problem.Ther Adv Drug Saf,6(2):57-66. [26]de Lima CherubimDJ,Buzanello MartinsCV,Oliveira FariñaL,et al.,2020.Polyphenols as natural antioxidants in cosmetics applications.J Cosmet Dermatol,19(1):33-37. [27]DingXG,LiowCH,ZhangMX,et al.,2014.Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window.J Am Chem Soc,136(44):15684-15693. [28]DuanJN,GaoSQ,TuS,et al.,2021.Pathophysiology and therapeutic potential of NADPH oxidases in ischemic stroke-induced oxidative stress.Oxid Med Cell Longev,2021:6631805. [29]DuanRR,SunK,FangF,et al.,2022.An ischemia-homing bioengineered nano-scavenger for specifically alleviating multiple pathogeneses in ischemic stroke.J Nanobiotechnology,20:397. [30]EjimaH,RichardsonJJ,CarusoF,2017.Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces.Nano Today,12:136-148. [31]FanJX,ZhengDW,MeiWW,et al.,2017.A metal-polyphenol network coated nanotheranostic system for metastatic tumor treatments.Small,13(48):1702714. [32]GanjeifarB,MorshedSF,2021.Targeted drug delivery in brain tumors-nanochemistry applications and advances.Curr Top Med Chem,21(14):1202-1223. [33]GaoCH,WangYL,SunJJ,et al.,2020.Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice.Acta Biomater,108:285-299. [34]GaoYF,ChengYX,ChenJP,et al.,2022.NIR-assisted MgO-based polydopamine nanoparticles for targeted treatment of Parkinson’s disease through the blood‒brain barrier.Adv Healthc Mater,11(23):2201655. [35]GaoZ,ZharovI,2014.Large pore mesoporous silica nanoparticles by templating with a nonsurfactant molecule, tannic acid.Chem Mater,26(6):2030-2037. [36]GeR,LinM,LiX,et al.,2017.Cu2+-loaded polydopamine nanoparticles for magnetic resonance imaging-guided pH- and near-infrared-light-stimulated thermochemotherapy.ACS Appl Mater Interfaces,9(23):19706-19716. [37]GoldenEB,LamPY,KardoshA,et al.,2009.Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors.Blood,113(23):5927-5937. [38]GregoryJV,KadiyalaP,DohertyR,et al.,2020.Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy.Nat Commun,11:5687. [39]GuoJL,PingY,EjimaH,et al.,2014.Engineering multifunctional capsules through the assembly of metal-phenolic networks.Angew Chem Int Ed,53(22):5546-5551. [40]GuoJL,TardyBL,ChristoffersonAJ,et al.,2016.Modular assembly of superstructures from polyphenol-functionalized building blocks.Nat Nanotechnol,11(12):1105-1111. [41]GuoXY,HongT,ZangJ,et al.,2022.Thrombus-specific/responsive biomimetic nanomedicine for spatiotemporal thrombolysis and alleviation of myocardial ischemia/reperfusion injury.J Nanobiotechnology,20:531. [42]GuoYX,SunQ,WuFG,et al.,2021.Polyphenol-containing nanoparticles: synthesis, properties, and therapeutic delivery.Adv Mater,33(22):2007356. [43]GuoZH,XieWS,LuJS,et al.,2021.Tannic acid-based metal phenolic networks for bio-applications: a review.J Mater Chem B,9(20):4098-4110. [44]GuoZH,KhattakS,RaufMA,et al.,2023.Role of nanomedicine-based therapeutics in the treatment of CNS disorders.Molecules,28(3):1283. [45]HabibS,SinghM,2022.Angiopep-2-modified nanoparticles for brain-directed delivery of therapeutics: a review.Polymers,14(4):712. [46]HanYY,LinZX,ZhouJJ,et al.,2020.Polyphenol-mediated assembly of proteins for engineering functional materials.Angew Chem Int Ed,59(36):15618-15625. [47]HanYY,LafleurRPM,ZhouJJ,et al.,2022.Role of molecular interactions in supramolecular polypeptide-polyphenol networks for engineering functional materials.J Am Chem Soc,144(27):12510-12519. [48]HassaniA,AzarianMMS,IbrahimWN,et al.,2020.Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles.Sci Rep,10:17808. [49]HeGL,ZhouY,LiMF,et al.,2021.Bioinspired synthesis of ZnO@polydopamine/Au for label-free photoelectrochemical immunoassay of amyloid-β protein.Front Bioeng Biotechnol,9:777344. [50]HongS,KimKY,WookHJ,et al.,2011.Attenuation of thein vivo toxicity of biomaterials by polydopamine surface modification.Nanomedicine,6(5):793-801. [51]HuB,WangY,XieMH,et al.,2015.Polymer nanoparticles composed with gallic acid grafted chitosan and bioactive peptides combined antioxidant, anticancer activities and improved delivery property for labile polyphenols.J Funct Foods,15:593-603. [52]HuH,LiuX,HongJ,et al.,2022.Mesoporous polydopamine-based multifunctional nanoparticles for enhanced cancer phototherapy.J Colloid Interface Sci,612:246-260. [53]HuJG,ZhangX,WenZH,et al.,2016.Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats.Oncotarget,7(45):73681-73696. [54]JakobekL,2015.Interactions of polyphenols with carbohydrates, lipids and proteins.Food Chem,175:556-567. [55]JenjobR,PhakkeereeT,CrespyD,2020.Core-shell particles for drug-delivery, bioimaging, sensing, and tissue engineering.Biomater Sci,8(10):2756-2770. [56]JingZ,LiMH,WangHY,et al.,2021.Gallic acid-gold nanoparticles enhance radiation-induced cell death of human glioma U251 cells.IUBMB Life,73(2):398-407. [57]KalaniA,KamatPK,KalaniK,et al.,2015.Epigenetic impact of curcumin on stroke prevention.Metab Brain Dis,30(2):427-435. [58]KalariaRN,AkinyemiR,IharaM,2016.Stroke injury, cognitive impairment and vascular dementia.Biochim Biophys Acta,1862(5):915-925. [59]KamathT,AbdulraoufA,BurrisSJ,et al.,2022.Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease.Nat Neurosci,25(5):588-595. [60]KanYJ,DannerEW,IsraelachviliJN,et al.,2014.Boronate complex formation with Dopa containing mussel adhesive protein retards pH-induced oxidation and enables adhesion to mica.PLoS ONE,9(10):e108869. [61]KatilaN,DuwaR,BhurtelS,et al.,2022.Enhancement of blood‒brain barrier penetration and the neuroprotective effect of resveratrol.J Control Release,346:1-19. [62]KellyPJ,MorrowJD,NingMM,et al.,2008.Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the biomarker evaluation for antioxidant therapies in stroke (beat-stroke) study.Stroke,39(1):100-104. [63]KevilCG,OshimaT,AlexanderB,et al.,2000.H2O2-mediated permeability: role of MAPK and occludin.Am J Physiol Cell Physiol,279(1):C21-C30. [64]KhayatanD,RazaviSM,ArabZN,et al.,2022.Protective effects of curcumin against traumatic brain injury.Biomed Pharmacother,154:113621. [65]KimC,FavazzaC,WangLV,2010.In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths.Chem Rev,110(5):2756-2782. [66]KuSH,RyuJ,HongSK,et al.,2010.General functionalization route for cell adhesion on non-wetting surfaces.Biomaterials,31(9):2535-2541. [67]KuzuharaT,SeiY,YamaguchiK,et al.,2006.DNA and RNA as new binding targets of green tea catechins.J Biol Chem,281(25):17446-17456. [68]LeeH,DellatoreSM,MillerWM,et al.,2007.Mussel-inspired surface chemistry for multifunctional coatings.Science,318(5849):426-430. [69]LeeH,KimWI,YounW,et al.,2018.Iron gall ink revisited: in situ oxidation of Fe(II)-tannin complex for fluidic-interface engineering.Adv Mater,30(49):1805091. [70]LevineZA,RappMV,WeiW,et al.,2016.Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces.Proc Natl Acad Sci USA,113(16):4332-4337. [71]LiGL,YeCS,ZhuY,et al.,2022.Oxidative injury in ischemic stroke: a focus on NADPH oxidase 4.Oxid Med Cell Longev,2022:1148874. [72]LiHM,YinD,LiW,et al.,2021.Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy.Colloids Surf B Biointerfaces,199:111502. [73]LiJC,DaiSQ,QinRX,et al.,2021.Ligand engineering of titanium-oxo nanoclusters for cerenkov radiation-reinforced photo/chemodynamic tumor therapy.ACS Appl Mater Interfaces,13(46):54727-54738. [74]LiSC,WangJG,JacobsonP,et al.,2009.Correlation between bonding geometry and band gap states at organic-inorganic interfaces:catechol on rutile TiO2(110).J Am Chem Soc,131(3):980-984. [75]LiTZ,LiJF,ChenZ,et al.,2022.Glioma diagnosis and therapy: current challenges and nanomaterial-based solutions.J Control Release,352:338-370. [76]LiY,MiaoY,YangLN,et al.,2022.Recent advances in the development and antimicrobial applications of metal-phenolic networks.Adv Sci,9(27):2202684. [77]LiYW,XieYJ,WangZ,et al.,2016.Structure and function of iron-loaded synthetic melanin.ACS Nano,10(11):10186-10194. [78]LiangK,ChungJE,GaoSJ,et al.,2018.Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy.Adv Mater,30(14):1706963. [79]LinKP,GanY,ZhuPD,et al.,2021.Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery.Nanotechnology,32(28):285602. [80]LiuXS,CaoJM,LiH,et al.,2013.Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticlesin vivo.ACS Nano,7(10):9384-9395. [81]LiuYL,AiKL,LuLH,2014.Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields.Chem Rev,114(9):5057-5115. [82]LiuYL,AiKL,JiXY,et al.,2017.Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke.J Am Chem Soc,139(2):856-862. [83]LloydKCK,MeehanT,BeaudetA,et al.,2015.Precision medicine: look to the mice.Science,349(6246):390. [84]LomasH,JohnstonAPR,SuchGK,et al.,2011.Polymersome-loaded capsules for controlled release of DNA.Small,7(14):2109-2119. [85]LuRF,ZhangXQ,ChengXX,et al.,2020.Medical applications based on supramolecular self-assembled materials from tannic acid.Front Chem,8:583484. [86]LvLJ,YangF,LiH,et al.,2020.Brain-targeted co-delivery of β-amyloid converting enzyme 1 shRNA and epigallocatechin-3-gallate by multifunctional nanocarriers for Alzheimer’s disease treatment.IUBMB Life,72(8):1819-1829. [87]MaT,WuJH,MuJF,et al.,2022.Biomaterials reinforced MSCs transplantation for spinal cord injury repair.Asian J Pharm Sci,17(1):4-19. [88]Magid-BernsteinJ,GirardR,PolsterS,et al.,2022.Cerebral hemorrhage: pathophysiology, treatment, and future directions.Circ Res,130(8):1204-1229. [89]MarkusHS,2004.Cerebral perfusion and stroke.J Neurol Neurosurg Psychiatry,75(3):353-361. [90]MarquesMS,CordeiroMF,MarinhoMAG,et al.,2020.Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery inwistar rats.Brain Res,1746:147007. [91]MarslinG,SarmentoBFCC,FranklinG,et al.,2017.Curcumin encapsulated into methoxy poly(ethylene glycol) poly(ε-caprolactone) nanoparticles increases cellular uptake and neuroprotective effect in glioma cells.Planta Med,83(5):434-444. [92]MedintzIL,StewartMH,TrammellSA,et al.,2010.Quantum-dot/dopamine bioconjugates function as redox coupled assemblies forin vitro and intracellular pH sensing.Nat Mater,9(8):676-684. [93]MengJN,AgrahariV,YoumI,2017.Advances in targeted drug delivery approaches for the central nervous system tumors: the inspiration of nanobiotechnology.J Neuroimmune Pharmacol,12(1):84-98. [94]MoYS,DuanLN,YangYN,et al.,2021.Nanoparticles improved resveratrol brain delivery and its therapeutic efficacy against intracerebral hemorrhage.Nanoscale,13(6):3827-3840. [95]MontañoA,HanleyDF,HemphillJC III,2021.Hemorrhagic stroke.Handb Clin Neurol,176:229-248. [96]MukherjeeS,BaidooJNE,SampatS,et al.,2018.Liposomal tricurin, a synergistic combination of curcumin, epicatechin gallate and resveratrol, repolarizes tumor-associated microglia/macrophages, and eliminates glioblastoma (GBM) and GBM stem cells.Molecules,23(1):201. [97]NasrM,2016.Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery.Drug Deliv,23(4):1444-1452. [98]NguyenTT,Dung NguyenTT,VoTK,et al.,2021.Nanotechnology-based drug delivery for central nervous system disorders.Biomed Pharmacother,143:112117. [99]NiuMM,HanY,LiQR,et al.,2018.Endogenous sulfur dioxide regulates hippocampal neuron apoptosis in developing epileptic rats and is associated with the PERK signaling pathway.Neurosci Lett,665:22-28. [100]OhHI,HoffJE,ArmstrongGS,et al.,1980.Hydrophobic interaction in tannin-protein complexes.J Agric Food Chem,28(2):394-398. [101]OuberaiM,DumyP,ChiericiS,et al.,2009.Synthesis and biological evaluation of clicked curcumin and clicked KLVFFA conjugates as inhibitors of β-amyloid fibril formation.Bioconjug Chem,20(11):2123-2132. [102]OvbiageleB,2008.Potential role of curcumin in stroke prevention.Expert Rev Neurother,8(8):1175-1176. [103]PetersO,BackT,LindauerU,et al.,1998.Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat.J Cereb Blood Flow Metab,18(2):196-205. [104]Piljac-ŽegaracJ,BelščakA,PiljacA,2009.Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.)leaf infusions. J Med Food,12(3):608-614. [105]PingY,GuoJL,EjimaH,et al.,2015.pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery.Small,11(17):2032-2036. [106]PrinzM,PrillerJ,2017.The role of peripheral immune cells in the CNS in steady state and disease.Nat Neurosci,20(2):136-144. [107]QiaoB,LuoYL,ChengHB,et al.,2020.Artificial nanotargeted cells with stable photothermal performance for multimodal imaging-guided tumor-specific therapy.ACS Nano,14(10):12652-12667. [108]QinJ,GuanYX,LiZJ,et al.,2022.Aptamer conjugated polydopamine-coated gold nanoparticles as a dual-action nanoplatform targeting β-amyloid peptide for Alzheimer’s disease therapy.J Mater Chem B,10(41):8525-8534. [109]QiuJC,ShiYF,XiaYN,2021.Polydopamine nanobottles with photothermal capability for controlled release and related applications.Adv Mater,33(45):2104729. [110]QiuXL,WangXL,HeYX,et al.,2021.Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries.Sci Adv,7(37):eabh3482. [111]QiuZY,YuZH,XuT,et al.,2022.Novel nano-drug delivery system for brain tumor treatment.Cells,11(23):3761. [112]QuYJ,de RoseR,KimCJ,et al.,2023.Supramolecular polyphenol-DNA microparticles for in vivo adjuvant and antigen co-delivery and immune stimulation.Angew Chem Int Ed,62(12):e202214935. [113]Quang TranH,BhaveM,YuAM,2020.Current advances of hollow capsules as controlled drug delivery systems.ChemistrySelect,5(19):5537-5551. [114]QuideauS,DeffieuxD,Douat-CasassusC,et al.,2011.Plant polyphenols: chemical properties, biological activities, and synthesis.Angew Chem Int Ed,50(3):586-621. [115]RajanS,KaasB,2022.Parkinson’s disease: risk factor modification and prevention.Semin Neurol,42(5):626-638. [116]ReichardCA,StephensonAJ,KleinEA,2015.Applying precision medicine to the active surveillance of prostate cancer.Cancer,121(19):3403-3411. [117]RenYZ,ZhaoX,LiangXF,et al.,2017.Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease.Int J Biol Macromol,105(Pt 1):1079-1087. [118]RongL,ZhangY,LiWS,et al.,2019.Iron chelated melanin-like nanoparticles for tumor-associated macrophage repolarization and cancer therapy.Biomaterials,225:119515. [119]RossCA,PoirierMA,2004.Protein aggregation and neurodegenerative disease.Nat Med,10(7):S10-S17. [120]Rugg-GunnF,MiserocchiA,McEvoyA,2020.Epilepsy surgery.Pract Neurol,20(1):4-14. [121]SaP,SinghP,DilnawazF,et al.,2022.Application of therapeutic nanoplatforms as a potential candidate for the treatment of CNS disorders: challenges and possibilities.Curr Pharm Des,28(33):2742-2757. [122]SaeediM,EslamifarM,KhezriK,et al.,2019.Applications of nanotechnology in drug delivery to the central nervous system.Biomed Pharmacother,111:666-675. [123]SalomäkiM,MarttilaL,KiveläH,et al.,2018.Effects of pH and oxidants on the first steps of polydopamine formation: a thermodynamic approach.J Phys Chem B,122(24):6314-6327. [124]SardoiwalaMN,SrivastavaAK,KaundalB,et al.,2020.Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-α-synuclein in Parkinson’s disease model.Nanomedicine,24:102088. [125]SardoiwalaMN,MohanbhaiSJ,KarmakarS,et al.,2022.Hytrin loaded polydopamine-serotonin nanohybrid induces IDH2 mediated neuroprotective effect to alleviate Parkinson’s disease.Biomater Adv,133:112602. [126]SchepiciG,BramantiP,MazzonE,2020.Efficacy of sulforaphane in neurodegenerative diseases.Int J Mol Sci,21(22):8637. [127]SchulmanS,BeythRJ,KearonC,et al.,2008.Hemorrhagic complications of anticoagulant and thrombolytic treatment: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).Chest,133(6):257S-298S. [128]ShakeelF,FazalMW,ZulfiqarA,et al.,2022.Melamine-derived N-rich C-entrapped au nanoparticles for sensitive and selective monitoring of dopamine in blood samples.RSC Adv,12(40):26390-26399. [129]ShaoLH,LiYH,HuangFF,et al.,2020.Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging.Theranostics,10(16):7273-7286. [130]SharmaA,KumarA,LiCN,et al.,2021.A cannabidiol-loaded Mg-gallate metal-organic framework-based potential therapeutic for glioblastomas.J Mater Chem B,9(10):2505-2514. [131]ShenWW,WangQW,ShenY,et al.,2018.Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers.ACS Cent Sci,4(10):1326-1333. [132]ShiJJ,YangY,YinN,et al.,2022.Engineering CXCL12 biomimetic decoy-integrated versatile immunosuppressive nanoparticle for ischemic stroke therapy with management of overactivated brain immune microenvironment.Small Methods,6(1):2101158. [133]ShinM,RyuJH,ParkJP,et al.,2015.DNA/tannic acid hybrid gel exhibiting biodegradability, extensibility, tissue adhesiveness, and hemostatic ability.Adv Funct Mater,25(8):1270-1278. [134]ShinM,LeeHA,LeeM,et al.,2018.Targeting protein and peptide therapeutics to the heart via tannic acid modification.Nat Biomed Eng,2(5):304-317. [135]ShutavaTG,BalkundiSS,LvovYM,2009.(-)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules.J Colloid Interface Sci,330(2):276-283. [136]SileikaTS,BarrettDG,ZhangR,et al.,2013.Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine.Angew Chem Int Ed,52(41):10766-10770. [137]SrivastavaAK,RoyChoudhury S,KarmakarS,2020.Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson’s disease therapy.Biomater Sci,8(5):1345-1363. [138]SweeneyMD,ZhaoZ,MontagneA,et al.,2019.Blood‒brain barrier: from physiology to disease and back.Physiol Rev,99(1):21-78. [139]TanLF,TangWT,LiuTL,et al.,2016.Biocompatible hollow polydopamine nanoparticles loaded ionic liquid enhanced tumor microwave thermal ablation in vivo.ACS Appl Mater Interfaces,8(18):11237-11245. [140]TangW,FanWP,LauJ,et al.,2019.Emerging blood‒brain-barrier-crossing nanotechnology for brain cancer theranostics.Chem Soc Rev,48(11):2967-3014. [141]TangXL,JingF,LinBL,et al.,2018.pH-responsive magnetic mesoporous silica-based nanoplatform for synergistic photodynamic therapy/chemotherapy.ACS Appl Mater Interfaces,10(17):15001-15011. [142]Terelak-BorysB,SkoniecznaK,Grabska-LiberekI,2012.Ocular ischemic syndrome ‒ a systematic review.Med Sci Monit,18(8):RA138-RA144. [143]TianY,YounisMR,TangYX,et al.,2021.Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death.J Nanobiotechnology,19:365. [144]TomaszewskiW,Sanchez-PerezL,GajewskiTF,et al.,2019.Brain tumor microenvironment and host state: implications for immunotherapy.Clin Cancer Res,25(14):4202-4210. [145]ValvonaCJ,FillmoreHL,NunnPB,et al.,2016.The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor.Brain Pathol,26(1):3-17. [146]van HungP,2016.Phenolic compounds of cereals and their antioxidant capacity.Crit Rev Food Sci Nutr,56(1):25-35. [147]VongLB,SatoY,ChonpathompikunlertP,et al.,2020.Self-assembled polydopamine nanoparticles improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia.Acta Biomater,109:220-228. [148]WanJR,RenHL,WangJ,2019.Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage.Stroke Vasc Neurol,4(2):93-95. [149]WangCP,SangHJ,WangYT,et al.,2018.Foe to friend: supramolecular nanomedicines consisting of natural polyphenols and bortezomib.Nano Lett,18(11):7045-7051. [150]WangCY,HuangR,LiC,et al.,2019.Vepoloxamer enhances fibrinolysis of tPA (tissue-type plasminogen activator) on acute ischemic stroke.Stroke,50(12):3600-3608. [151]WangW,ZhengJY,ZhouH,et al.,2022.Polydopamine-based nanocomposite as a biomimetic antioxidant with a variety of enzymatic activities for Parkinson’s disease.ACS Appl Mater Interfaces,14(29):32901-32913. [152]WangWJ,TangQ,YuTR,et al.,2017.Surfactant-free preparation of Au@resveratrol hollow nanoparticles with photothermal performance and antioxidant activity.ACS Appl Mater Interfaces,9(4):3376-3387. [153]WangXY,YanJJ,WangLZ,et al.,2020.Oral delivery of anti-TNF antibody shielded by natural polyphenol-mediated supramolecular assembly for inflammatory bowel disease therapy.Theranostics,10(23):10808-10822. [154]WangXY,ZhangYM,LiT,et al.,2023.Bioorthogonal glycoengineering-mediated multifunctional liquid metal nanoprobes for highly efficient photoacoustic imaging-guided photothermal/chemotherapy of tumor.ACS Appl Bio Mater,6(8):3232-3240. [155]WangZQ,WangLC,PrabhakarN,et al.,2019.CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy.Acta Biomater,86:416-428. [156]WarrenN,O'GormanC,LehnA,et al.,2017.Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases.J Neurol Neurosurg Psychiatry,88(12):1060-1064. [157]WeiYC,QuanL,ZhouC,et al.,2018.Factors relating to the biodistribution & clearance of nanoparticles & their effects onin vivo application.Nanomedicine,13(12):1495-1512. [158]WilliamsET,ChenX,OteroPA,et al.,2022.Understanding the contributions of VPS35 and the retromer in neurodegenerative disease.Neurobiol Dis,170:105768. [159]WuD,ZhouJJ,CreyerMN,et al.,2021.Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine.Chem Soc Rev,50(7):4432-4483. [160]WuD,FeiF,ZhangQ,et al.,2022.Nanoengineered on-demand drug delivery system improves efficacy of pharmacotherapy for epilepsy.Sci Adv,8(2):eabm3381. [161]WuPK,ZhangHT,YinY,et al.,2022.Engineered EGCG-containing biomimetic nanoassemblies as effective delivery platform for enhanced cancer therapy.Adv Sci,9(15):2105894. [162]XiangSY,YangP,GuoH,et al.,2017.Green tea makes polyphenol nanoparticles with radical-scavenging activities.Macromol Rapid Commun,38(23):1700446. [163]XieJB,ShenZY,AnrakuY,et al.,2019.Nanomaterial-based blood-brain-barrier (BBB) crossing strategies.Biomaterials,224:119491. [164]XuJ,ChenZQ,YuF,et al.,2020.IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice.Proc Natl Acad Sci USA,117(51):32679-32690. [165]XuJH,MaCY,HuaML,et al.,2022.CNS and CNS diseases in relation to their immune system.Front Immunol,13:1063928. [166]XuJP,ChenTY,TaiCH,et al.,2023.Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson’s disease.Biomater Res,27(1):8. [167]XuSB,ChangLN,ZhaoXJ,et al.,2022.Preparation of epigallocatechin gallate decorated Au-Ag nano-heterostructures as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection.Acta Biomater,144:168-182. [168]XuSH,NieYY,JiangLP,et al.,2018.Polydopamine nanosphere/gold nanocluster (Au NC)-based nanoplatform for dual color simultaneous detection of multiple tumor-related micrornas with DNase-I-assisted target recycling amplification.Anal Chem,90(6):4039-4045. [169]XuanMJ,ZhaoJ,ShaoJX,et al.,2017.Recent progresses in layer-by-layer assembled biogenic capsules and their applications.J Colloid Interface Sci,487:107-117. [170]XueJH,ZhengWC,WangL,et al.,2016.Scalable fabrication of polydopamine nanotubes based on curcumin crystals.ACS Biomater Sci Eng,2(4):489-493. [171]XueS,ZhouXJ,SangWL,et al.,2021.Cartilage-targeting peptide-modified dual-drug delivery nanoplatform with NIR laser response for osteoarthritis therapy.Bioact Mater,6(8):2372-2389. [172]YangGB,PhuaSZF,BindraAK,et al.,2019.Degradability and clearance of inorganic nanoparticles for biomedical applications.Adv Mater,31(10):1805730. [173]YangXJ,LiuX,LiuZ,et al.,2012.Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles.Adv Mater,24(21):2890-2895. [174]YildirimA,BayindirM,2014.Turn-on fluorescent dopamine sensing based onin situ formation of visible light emitting polydopamine nanoparticles.Anal Chem,86(11):5508-5512. [175]YuB,WangDA,YeQ,et al.,2009.Robust polydopamine nano/microcapsules and their loading and release behavior.Chem Commun,44:6789-6791. [176]YuWY,YinN,YangY,et al.,2022.Rescuing ischemic stroke by biomimetic nanovesicles through accelerated thrombolysis and sequential ischemia-reperfusion protection.Acta Biomater,140:625-640. [177]YuX,FanHL,WangL,et al.,2014.Formation of polydopamine nanofibers with the aid of folic acid.Angew Chem Int Ed,53(46):12600-12604. [178]ZhangHH,SunY,HuangR,et al.,2018.pH-sensitive prodrug conjugated polydopamine for NIR-triggered synergistic chemo-photothermal therapy.Eur J Pharm Biopharm,128:260-271. [179]ZhangHY,van OsWL,TianXB,et al.,2021.Development of curcumin-loaded zein nanoparticles for transport across the blood‒brain barrier and inhibition of glioblastoma cell growth.Biomater Sci,9(21):7092-7103. [180]ZhangLR,YangP,GuoRR,et al.,2019.Multifunctional meso [181]porous polydopamine with hydrophobic paclitaxel for photoacoustic imaging-guided chemo-photothermal synergistic therapy.Int J Nanomedicine,14:8647-8663. [182]ZhangMJ,JiangYX,QiKZ,et al.,2021.Precise engineering of acorn-like Janus nanoparticles for cancer theranostics.Acta Biomater,130:423-434. [183]ZhangP,ZhangY,DingXY,et al.,2020.A multistage cooperative nanoplatform enables intracellular co-delivery of proteins and chemotherapeutics for cancer therapy.Adv Mater,32(46):2000013. [184]ZhangQY,LiLB,2018.Photodynamic combinational therapy in cancer treatment.J BUON,23(3):561-567. [185]ZhangSS,AsgharS,ZhuCQ,et al.,2021.Multifunctional nanorods based on self-assembly of biomimetic apolipoprotein E peptide for the treatment of Alzheimer’s disease.J Control Release,335:637-649. [186]ZhangWJ,ChristoffersonAJ,BesfordQA,et al.,2019.Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt-tannic acid networks.Nanoscale,11(4):1921-1928. [187]ZhangYL,XiKY,FuX,et al.,2021.Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma.Biomaterials,278:121163. [188]ZhaoNX,YangX,CalvelliHR,et al.,2020.Antioxidant nanoparticles for concerted inhibition of α-synuclein fibrillization, and attenuation of microglial intracellular aggregation and activation.Front Bioeng Biotechnol,8:112. [189]ZhaoX,YeY,GeSY,et al.,2020.Cellular and molecular targeted drug delivery in central nervous system cancers: advances in targeting strategies.Curr Top Med Chem,20(30):2762-2776. [190]ZhaoYM,LiDL,ZhuZF,et al.,2020.Improved neuroprotective effects of gallic acid-loaded chitosan nanoparticles against ischemic stroke.Rejuvenation Res,23(4):284-292. [191]ZhouJJ,JiangYY,HouS,et al.,2018.Compact plasmonic blackbody for cancer theranosis in the near-infrared II window.ACS Nano,12(3):2643-2651. [192]ZhouJJ,LinZX,JuY,et al.,2020.Polyphenol-mediated assembly for particle engineering.ACC Chem Res,53(7):1269-1278. [193]ZhouQ,LiuXX,TianY,et al.,2017.Mussel-inspired polydopamine coating on tobacco mosaic virus: one-dimensional hybrid nanofibers for gold nanoparticle growth.Langmuir,33(38):9866-9872. [194]ZhouZD,XieSP,SawWT,et al.,2019.The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in Parkinson’s disease (PD).Cells,8(8):911. [195]ZhuF,ZhangJH,ZhongJ,et al.,2023.Natural polyphenol-based nanoparticles for the treatment of iron-overload disease.J Control Release,356:84-92. [196]ZhuHT,CaoXF,CaiXJ,et al.,2020.Pifithrin-μ incorporated in gold nanoparticle amplifies pro-apoptotic unfolded protein response cascades to potentiate synergistic glioblastoma therapy.Biomaterials,232:119677. [197]ZhuTT,WangH,GuHW,et al.,2023.Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory depression therapy.J Nanobiotechnology,21:52. Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>