Full Text:   <1124>

CLC number: 

On-line Access: 2021-07-17

Received: 2021-03-16

Revision Accepted: 2021-06-09

Crosschecked: 0000-00-00

Cited: 0

Clicked: 939

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2022 Vol.5 No.1 P.174-188

http://doi.org/10.1007/s42242-021-00148-1


Bioinspired soft actuators with highly ordered skeletal muscle structures


Author(s):  Yingjie Wang, Chunbao Liu, Luquan Ren & Lei Ren

Affiliation(s):  School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, China; more

Corresponding email(s):   liuchunbao@jlu.edu.cn, lei.ren@manchester.ac.uk

Key Words:  Bioinspired, Soft robotics, Actuator, Skeletal muscle


Share this article to: More

Yingjie Wang, Chunbao Liu, Luquan Ren & Lei Ren . Bioinspired soft actuators with highly ordered skeletal muscle structures[J]. Journal of Zhejiang University Science D, 2022, 5(1): 174-188.

@article{title="Bioinspired soft actuators with highly ordered skeletal muscle structures",
author="Yingjie Wang, Chunbao Liu, Luquan Ren & Lei Ren ",
journal="Journal of Zhejiang University Science D",
volume="5",
number="1",
pages="174-188",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-021-00148-1"
}

%0 Journal Article
%T Bioinspired soft actuators with highly ordered skeletal muscle structures
%A Yingjie Wang
%A Chunbao Liu
%A Luquan Ren & Lei Ren
%J Journal of Zhejiang University SCIENCE D
%V 5
%N 1
%P 174-188
%@ 1869-1951
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-021-00148-1

TY - JOUR
T1 - Bioinspired soft actuators with highly ordered skeletal muscle structures
A1 - Yingjie Wang
A1 - Chunbao Liu
A1 - Luquan Ren & Lei Ren
J0 - Journal of Zhejiang University Science D
VL - 5
IS - 1
SP - 174
EP - 188
%@ 1869-1951
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-021-00148-1


Abstract: 
Mammals such as humans develop skeletal muscles composed of muscle fibers and connective tissue, which have mechanical properties that enable power output with three-dimensional motion when activated. Artificial muscle-like actuators developed to date, such as the McKibben artificial muscle, often focus sole contractile elements and have rarely addressed the contribution of flexible connective tissue that forms an integral part of the structure and morphology of biological muscle. Herein, we present a class of pneumatic muscle-like actuators, termed highly mimetic skeletal muscle (HimiSK) actuator, that consist of parallelly arranged contractile units in a flexible matrix inspired by ultrasonic measurements on skeletal muscle. The contractile units act as a muscle fiber to produce active shortening force, and the flexible matrix functions as connective tissue to generate passive deformation. The application of positive pressure to the contractile units can produce a linear contraction and force. In this actuator, we assign different flexible materials as contractile units and a flexible matrix, thus forming five mold actuators. These actuators feature three-dimensional motion on activation and present both intrinsic force–velocity and force–length characteristics that closely resebmle those of a biological muscle. High output and tetanic force produced by harder contractile units improve the maximum output force by up to about 41.3% and the tetanic force by up to about 168%. Moreover, high displacement and velocity can be generated by a softer flexible matrix, with the improvement of maximum displacement up to about 33.3% and velocity up to about 73%. The results demonstrate that contractile units play a crucial role in force generation, while the flexible matrix has a significant impact on force transmission and deformation; the final force, velocity, displacement, and three-dimensional motion results from the interplay of contractile units, fluid and flexible matrix. Our approach introduces a model of the presented HimiSK actuators to better understand the mechanical behaviors, force generation, and transmission in bioinspired soft actuators, and highlights the importance of using flexible connective tissue to form a structure and configuration similar to that of skeletal muscle, which has potential usefulness in the design of effective artificial muscle.

吉林大学刘春宝、王影杰、任雷等 | 受骨骼肌高度有序结构启发的仿生柔性驱动器

本研究论文聚焦仿生柔性驱动器的研究。人类等哺乳动物的骨骼肌由肌纤维和结缔组织构成,这种骨骼肌具有力学特性使它们在激活时能够产生力量输出和三维运动。迄今为止,人工肌肉类驱动器的开发,如McKibben气动人工肌肉,往往专注于单一的收缩元件,而忽略柔性结缔组织,而后者是生物肌肉结构和形态的重要组成部分。因此,受超声测量的骨骼肌结构启发,本文提出一种高度仿骨骼肌(HimiSK)驱动器。该驱动器由平行排列的收缩单元和柔性基质组成,收缩单元作为肌纤维产生主动收缩力,柔性基质作为结缔组织产生被动变形,当收缩单元受到正压力时产生线性收缩和输出力。在该驱动器中,分配收缩单元和柔性基质不同的柔性材料,形成五种柔性驱动器。这些驱动器在激活时均具有三维运动特征,并呈现出与生物肌肉相似的力-速度和力-长度特性。较硬的收缩单元能够产生较高的输出力和强直力,最大输出力提高约41.3%,强直力提高约168%。较软的柔性基体可产生较大的位移和速度,最大位移提高约33.3%,速度提高约73%。结果表明:收缩单元对力的产生起着至关重要的作用,而柔性基质对力的传递和变形有显著的影响,最终的力、速度、位移和三维运动是收缩单元、流体和柔性基质相互作用的结果。我们所提出的HimiSK驱动器模型更好地理解了柔性驱动器的力学行为、力的产生和传递,并强调了使用柔性结缔组织形成与骨骼肌相似的结构和构型的重要性,在设计高效的人工肌肉方面具有潜在的用途。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE