Full Text:   <1452>

Summary:  <243>

Suppl. Mater.: 

CLC number: V446+.9

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-03-14

Cited: 0

Clicked: 1005

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shilei TU

https://orcid.org/0000-0003-1647-4975

Huiquan WANG

https://orcid.org/0000-0003-0113-8223

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.4 P.600-615

http://doi.org/10.1631/FITEE.2200445


A spaceborne advanced storage system for remote sensing microsatellites


Author(s):  Shilei TU, Huiquan WANG, Yue HUANG, Zhonghe JIN

Affiliation(s):  Micro-Satellite Research Center, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   12024046@zju.edu.cn, hqwang@zju.edu.cn

Key Words:  Microsatellite, Spaceborne advanced storage system (SASS), Scalability, Performance, Reliability


Shilei TU, Huiquan WANG, Yue HUANG, Zhonghe JIN. A spaceborne advanced storage system for remote sensing microsatellites[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(4): 600-615.

@article{title="A spaceborne advanced storage system for remote sensing microsatellites",
author="Shilei TU, Huiquan WANG, Yue HUANG, Zhonghe JIN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="4",
pages="600-615",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200445"
}

%0 Journal Article
%T A spaceborne advanced storage system for remote sensing microsatellites
%A Shilei TU
%A Huiquan WANG
%A Yue HUANG
%A Zhonghe JIN
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 4
%P 600-615
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200445

TY - JOUR
T1 - A spaceborne advanced storage system for remote sensing microsatellites
A1 - Shilei TU
A1 - Huiquan WANG
A1 - Yue HUANG
A1 - Zhonghe JIN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 4
SP - 600
EP - 615
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200445


Abstract: 
With the development of satellite miniaturization and remote sensing, the establishment of microsatellite constellations is an inevitable trend. Due to their limited size, weight, and power, spaceborne storage systems with excellent scalability, performance, and reliability are still one of the technical bottlenecks of remote sensing microsatellites. Based on the commercial off-the-shelf field-programmable gate array and memory devices, a spaceborne advanced storage system (SASS) is proposed in this paper. This work provides a dynamic programming, queue scheduling multiple-input multiple-output cache technique and a high-speed, high-reliability NAND flash controller for multiple microsatellite payload data. Experimental results show that SASS has outstanding scalability with a maximum write rate of 2429 Mb/s and preserves at least 78.53% of the performance when a single NAND flash fails. The scheduling technique effectively shortens the data scheduling time, and the data remapping method of the NAND flash controller can reduce the retention error by at least 50.73% and the program disturbance error by at least 37.80%.

一种遥感微纳卫星星载先进存储系统

涂实磊1,2,王慧泉1,2,黄跃1,2,金仲和1,2
1浙江大学微小卫星研究中心,中国杭州市,310027
2浙江省微纳卫星研究重点实验室,中国杭州市,310027
摘要:随着卫星小型化技术和遥感技术的发展,微纳卫星星座的快速部署与应用是必然趋势。由于体积、重量和功率(SWaP)的限制,具有高扩展性、高性能和高可靠性的星载存储系统仍然是遥感微纳卫星的技术瓶颈之一。基于商用现货(COTS)现场可编程门阵列(FPGA)和存储器件,本文提出一种小型化星载先进存储系统(SASS)设计。该设计为微纳卫星多通道载荷数据提供了基于动态规划调度与队列调度的多输入多输出缓存技术和一种高速、高可靠性的NAND flash控制器。实验结果表明,SASS具有出色的可扩展性,支持多通道数据调度与存储,适配不同型号遥感卫星。其最大数据写入速率可达2429 Mb/s,在单个NAND flash故障时,数据写入速率至少能保留78.53%。动态规划调度与队列调度有效缩短了数据调度时间,提高数据调度实时性,提出的数据重映射法使NAND flash数据驻留错误降低了至少50.73%,存储误码率降低了至少37.80%。

关键词:微纳卫星;星载先进存储系统;扩展性;性能;可靠性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Airbus Defence and Space, 2022. Airbus Defence and Space S.A.S. http://www.astrium.eads.net/ [Accessed on Sept. 23, 2022].

[2]Cai Y, Mutlu O, Haratsch EF, et al., 2013. Program interference in MLC NAND flash memory: characterization, modeling, and mitigation. Proc IEEE 31st Int Conf on Computer Design, p.123-130.

[3]Calculex, 2022. Calculex Electronics, Systems, Software and Support. https://www.calculex.com/A_home.html [Accessed on Sept. 23, 2022].

[4]Ding WZ, Li XH, Yang H, 2020. Quick-response microsatellite constellation design. Proc IEEE 4th Information Technology, Networking, Electronic and Automation Control Conf, p.262-267.

[5]Dong ZX, 2017. Research on Application of Spaceborne Solid State Recorder File Management Scheme. PhD Thesis, National Space Science Center, University of Chinese Academy of Sciences, Beijing, China(in Chinese).

[6]Fabiano M, Furano G, 2013. NAND flash storage technology for mission-critical space applications. IEEE Aerosp Electron Syst Mag, 28(9):30-36.

[7]Huang XP, Netravali R, Man H, et al., 2012. Multi-sensor fusion of electro-optic and infrared signals for high resolution visible images: part II. IEEE OCEANS, p.1-6.

[8]Kong LH, He W, Yang CG, et al., 2021. Robust neurooptimal control for a robot via adaptive dynamic programming. IEEE Trans Neur Netw Learn Syst, 32(6):2584-2594.

[9]Li QA, 2019. Virtual Multichannel Storage Technology for Large Capacity Spaceborne Data. MS Thesis, Huazhong University of Science & Technology, Wuhan, China (in Chinese).

[10]Li S, 2015. Study on the Space-borne Solid State Recorder—about Hardware Architecture. PhD Thesis, Center for Space Science and Applied Research, University of Chinese Academy of Sciences, Beijing, China(in Chinese).

[11]Liu GH, Zhou J, Sun F, 2018. Design and in-orbit verification of data storage system for nano-pico satellites. J Harbin Inst Technol, 50(2):178-183(in Chinese).

[12]Liu ZX, 2021. Research on Integrated Avionics for Remote Sensing Satellite. PhD Thesis, University of Science and Technology of China, Hefei, China (in Chinese).

[13]Mahdy AM, Abdelaziz M, El-Azeem MHA, 2020. Design and simulation of parallel BCH code with LDPC code for flash memories. Proc 12th Int Conf on Electrical Engineering, p.196-199.

[14]Micron, 2010. Micron NAND Flash Memory. https://www.semiee.com/file2/165a2193073703c940800196ff67e021/Micron/Micron-MT29F%20series.pdf [Accessed on Sept. 23, 2022].

[15]Micron, 2021. MT41K512M16HA-125. https://www.semiee.com/file2/dabbd658a6c01cbc1846c4bc799bf821/Micron/Micron-MT41K512M16HA-125.pdf [Accessed on Sept. 23, 2022].

[16]Pavan P, Bez R, Olivo P, et al., 1997. Flash memory cells—an overview. Proc IEEE, 85(8):1248-1271.

[17]Radhakrishnan R, Edmonson WW, Afghah F, et al., 2016. Survey of inter-satellite communication for small satellite systems: physical layer to network layer view. IEEE Commun Surv Tutor, 18(4):2442-2473.

[18]Reid M, Ottman G, 2014. Software controlled memory scrubbing for the Van Allen Probes solid state recorder (SSR) memory. IEEE Aerospace Conf, p.1-6.

[19]Rhee S, Kim C, Kim J, et al., 2010. Concatenated Reed‒Solomon code with hamming code for DRAM controller. Proc 2nd Int Conf on Computer Engineering and Applications, p.291-295.

[20]Sasada T, Ichikawa S, Shirakura M, 2005. Mass data recorder with ultra-high-density stacked memory for spacecraft. IEEE Aerospace Conf, p.1-8.

[21]Schmidt AG, French M, Flatley T, 2017. Radiation hardening by software techniques on FPGAs: flight experiment evaluation and results. IEEE Aerospace Conf, p.1-8.

[22]SEAKR Engineering, 2022. Aerospace Data Storage and Processing Solutions. http://www.seakr.com/ [Accessed on Sept. 23, 2022].

[23]Sezer A, Çelikkaya O, Hassoy B, 2017. Microsatellite constellation for Earth observation missions. Proc 8th Int Conf on Recent Advances in Space Technologies, p.279-284.

[24]Shan L, Miura R, 2014. Energy-efficient scheduling under hard delay constraints for multi-user MIMO system. Int Symp on Wireless Personal Multimedia Communications, p.696-699.

[25]Song Q, 2015. Research and Application of Storage Management Technology for Spaceborne Solid State Recorder. PhD Thesis, Center for Space Science and Applied Research, University of Chinese Academy of Sciences, Beijing, China(in Chinese).

[26]Micro Space, 2022. Space Micro. http://www.spacemicro.com [Accessed on Sept. 23, 2022].

[27]Stuffler T, Kaufmann C, Hofer S, et al., 2007. The EnMAP hyperspectral imager—an advanced optical payload for future applications in Earth observation programmes. Acta Astronaut, 61(1-6):115-120.

[28]Vakil A, Blasch E, Ewing R, et al., 2021. Visualizations of fusion of electro optical (EO) and passive radio-frequency (PRF) data. IEEE National Aerospace and Electronics Conf, p.294-301.

[29]Wang GQ, Chen H, Xie YZ, 2021. An efficient dual-channel data storage and access method for spaceborne synthetic aperture radar real-time processing. Electronics, 10(6):662.

[30]Wang JX, 2010. Research and Implementation on Solid State Storage Technology Based on NAND Flash Memory. MS Thesis, National University of Defense Technology, Changsha, China(in Chinese).

[31]Wang LG, 2019. Research on High Performance Integrated Aerospace Electronic Technology. PhD Thesis, National Space Science Center, University of Chinese Academy of Sciences, Beijing, China(in Chinese).

[32]Wei DB, Deng LB, Qiao LY, et al., 2016. PEVA: a page endurance variance aware strategy for the lifetime extension of NAND flash. IEEE Trans Very Large Scale Integr (VLSI) Syst, 24(5):1749-1760.

[33]Werbos PJ, 2011. Computational intelligence for the smart grid-history, challenges, and opportunities. IEEE Comput Intell Mag, 6(3):14-21.

[34]Xiao YA, Luo CL, Yang C, 2011. The comparative analysis of LDPC and RS code. Int Conf on Consumer Electronics, Communications and Networks, p.4510-4513.

[35]Xu W, Jin G, Wang JQ, 2017. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite. Opt Prec Eng, 25(8):1969-1978(in Chinese).

[36]Xu X, Hu DW, Lu XC, 2007. Kernel-based least squares policy iteration for reinforcement learning. IEEE Trans Neur Netw, 18(4):973-992.

[37]Xu X, Yang HY, Lian CQ, et al., 2017. Self-learning control using dual heuristic programming with global Laplacian Eigenmaps. IEEE Trans Ind Electron, 64(12):9517-9526.

[38]Yang CL, 2008. Research and Implementation of Embedded File System Based on NAND Flash. MS Thesis, University of Electronic Science and Technology of China, Chengdu, China(in Chinese).

[39]Yang Z, Long T, 2015. Methods to improve system verification efficiency in FPGA-based spaceborne SAR image processing system. IET Int Radar Conf, p.1-5.

[40]Yin YN, 2018. Investigation of Single Event Effects and Synergistic Effects with Total Ionizing Dose in Flash Memory. PhD Thesis, Institute of Modern Physics, University of Chinese Academy of Sciences, Beijing, China(in Chinese).

[41]Zhang XY, 2020. Research of High Speed Synchronous NAND Flash Spaceborne Storage Technology. MS Thesis, National Space Science Center, University of Chinese Academy of Sciences, Beijing, China (in Chinese).

[42]Zhang Y, Zhou Q, Li J, et al., 2015. The simulation and realization of input-buffer scheduling algorithm in satellite switching system. Space Electron Technol, 12(1):97-103.

[43]Zhang Y, Xia Z, Zhang T, et al., 2020. Real-time processing of ship detection with spaceborne SAR image based on multiple FPGA. IET Int Radar Conf, p.1060-1065.

[44]Zhou F, Yang J, Sun GC, et al., 2020. A real-time imaging processing method based on modified RMA with sub-aperture images fusion for spaceborne spotlight SAR. IEEE Int Geoscience and Remote Sensing Symp, p.1905-1908.

[45]Zhu RZ, Tang L, Wan J, et al., 2020. Development trend of spaceborne storage system. Microelectron Comput, 37(12):59-63.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE