Full Text:   <3137>

Summary:  <36>

CLC number: TP39

On-line Access: 2026-01-08

Received: 2024-02-17

Revision Accepted: 2024-04-24

Crosschecked: 2026-01-08

Cited: 0

Clicked: 2040

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Amjed ALI

https://orcid.org/0009-0006-5305-9278

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.11 P.2081-2113

http://doi.org/10.1631/FITEE.2400117


Space–time processing for inflight broadband connectivity: critical analysis, challenges, and future directions


Author(s):  Amjed ALI, Noor Muhammad KHAN

Affiliation(s):  Department of Electrical and Computer Engineering, Capital University of Science and Technology, Islamabad 46000, Pakistan

Corresponding email(s):   dee193003@cust.pk, noor@ieee.org

Key Words:  Airborne Internet access, Inflight broadband connectivity, Multiple-input multiple-output (MIMO), Precoding, Beamforming, Direct air-to-ground communication (DA2GC), Space–, time processing


Amjed ALI, Noor Muhammad KHAN. Space–time processing for inflight broadband connectivity: critical analysis, challenges, and future directions[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2081-2113.

@article{title="Space–time processing for inflight broadband connectivity: critical analysis, challenges, and future directions",
author="Amjed ALI, Noor Muhammad KHAN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2081-2113",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400117"
}

%0 Journal Article
%T Space–time processing for inflight broadband connectivity: critical analysis, challenges, and future directions
%A Amjed ALI
%A Noor Muhammad KHAN
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2081-2113
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400117

TY - JOUR
T1 - Space–time processing for inflight broadband connectivity: critical analysis, challenges, and future directions
A1 - Amjed ALI
A1 - Noor Muhammad KHAN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2081
EP - 2113
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400117


Abstract: 
inflight broadband connectivity (commonly termed as inflight connectivity) can be considered one of the remaining milestones for ubiquitous Internet provision; therefore, several enabling technologies are being investigated to provide high-capacity, reliable, and affordable Internet access. multiple-input multiple-output (MIMO), based on the space–;time processing (STP) concept, is one of the dominant technologies that consistently appear on the list of inflight connectivity (IFC) enablers. STP shows the potential to significantly increase user throughput, improve spectral/energy efficiencies, and increase the capacity as well as reliability of airborne networks through spatial multiplexing/diversity techniques. This article presents the preliminary outcomes of substantial research on STP techniques for enabling IFC, as the exploratory study on this topic is still in its early stages. We explore the theoretical principles behind different STP techniques and their implementation in airborne networks in direct air-to-ground (A2G) scenarios for the provision of a reliable and high-speed IFC. We also analyze the current technologies and techniques used for IFC and highlight their benefits and limitations. We present a comprehensive review that compares different STP techniques using metrics such as bit error rate (BER), spectral efficiency (SE), and capacity. Last, but not least, we discuss the substantial research challenges encountered and the prospective future research avenues that require special attention for enhancing the deployment of STP systems in forthcoming airborne networks, particularly for enabling IFC. Overall, this research study contributes to the body of knowledge by providing insights into the use of STP techniques in airborne networks for enabling IFC. It emphasizes the theoretical foundations, presents a literature review, discusses challenges and limitations, identifies potential areas for future research, and provides a performance analysis.

面向机上宽带连接的空时处理:关键分析、挑战与未来方向

Amjed ALI, Noor Muhammad KHAN
首都科学技术大学电气与计算机工程系,巴基斯坦伊斯兰堡,46000
摘要:机上宽带连接(通常称为"机上连接")可视为实现泛在互联网服务的最后里程碑之一,因此当前正研究多种使能技术以提供高容量、可靠且经济的互联网接入。基于空时处理的多输入多输出技术是持续位列机上连接使能方案清单的核心技术之一。空时处理通过空间复用与分集技术,展现出显著提升用户吞吐量、改善频谱/能源效率、增强机载网络容量与可靠性的潜力。本文展示了关于机上连接使能技术中的空时处理方法的初步研究成果—该主题的探索性研究尚处于早期阶段。探究了不同空时处理技术的理论基础及其在直接空对地场景下机载网络的实施方案,以提供可靠高速的机上连接。分析了当前机上连接的技术和方法,并阐明其优势与局限。通过误码率、频谱效率和容量等指标,对不同空时处理技术作了系统性比较。最后,探讨了该领域面临的重大研究挑战以及需要特别关注的潜在研究方向,以促进空时处理系统在未来机载网络尤其是机上连接中的部署。总体而言,本文通过揭示空时处理技术在机载网络中实现机上连接的应用路径,丰富了该领域知识体系—强调了理论基础,进行了文献综述,讨论了挑战和局限,指出了潜在研究领域,并提供了性能分析。

关键词:机载互联网接入;机上宽带连接;多输入多输出(MIMO);预编码;波束成型;直接空对地通信(DA2GC);空时处理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abo-Zeed M, Din JB, Shayea I, et al., 2019. Survey on land mobile satellite system: challenges and future research trends. IEEE Access, 7:137291-137304.

[2]Ahmed I, Khammari H, Shahid A, et al., 2018. A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun Surv Tut, 20(4):3060-3097.

[3]Alamouti SM, 1998. A simple transmit diversity technique for wireless communications. IEEE J Sel Areas Commun, 16(8):1451-1458.

[4]Albert CB, Chen H, 2016. Performance comparison in digital beamforming using LMS, RLS and D3LS algorithms. Int J Comput Sci Mobile Comput, 5(5):221-230.

[5]Albreem MA, Juntti M, Shahabuddin S, 2019. Massive MIMO detection techniques: a survey. IEEE Commun Surv Tut, 21(4):3109-3132.

[6]Albreem MA, Habbash AHA, Abu-Hudrouss AM, et al., 2021. Overview of precoding techniques for massive MIMO. IEEE Access, 9:60764-60801.

[7]Ali E, Ismail M, Nordin R, et al., 2017. Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research. Front Inform Technol Electron Eng, 18(6):753-772.

[8]Alozie E, Abdulkarim A, Abdullahi I, et al., 2022. A review on rain signal attenuation modeling, analysis and validation techniques: advances, challenges and future direction. Sustainability, 14(18):11744.

[9]Alrubei MAT, Alshimaysawe IA, Hassan AN, et al., 2020. Capacity analysis & performance comparison of SISO, SIMO, MISO & MIMO systems. J Phys Conf Ser, 1530:012077.

[10]An CY, 2017. The advanced progress of precoding technology in 5G system. IOP Conf Ser Mater Sci Eng, 231(1):012059.

[11]Babu VL, Mathews L, Pillai SS, 2015. Performance analysis of linear and nonlinear precoding in MIMO systems. Int J Adv Res Comput Commun Eng, 4(6):373-376.

[12]Bai L, Xie JD, Guan WY, et al., 2013. A primary rate guaranteed SDMA for aeronautical communications. Proc 8th Int Conf on Communications and Networking in China, p.925-929.

[13]Bai YM, Liang ZH, Zhai CH, et al., 2019. Joint precoding using successive over-relaxation matrix inversion and Newton iteration for massive MIMO systems. 11th Int Conf on Wireless Communications and Signal Processing, p.1-5.

[14]Bello P, 1963. Characterization of randomly time-variant linear channels. IEEE Trans Commun Syst, 11(4):360-393.

[15]Bhotto MZA, Bajic IV, 2015. Constant modulus blind adaptive beamforming based on unscented Kalman filtering. IEEE Signal Process Lett, 22(4):474-478.

[16]Bilen T, Ahmadi H, Canberk B, et al., 2022. Aeronautical networks for in-flight connectivity: a tutorial of the state-of-the-art and survey of research challenges. IEEE Access, 10:20053-20079.

[17]Björnson E, Hoydis J, Sanguinetti L, 2017. Massive MIMO networks: spectral, energy, and hardware efficiency. Found Trends Signal Process, 11(3-4):154-655.

[18]Bogale TE, Le LB, 2014. Beamforming for multiuser massive MIMO systems: digital versus hybrid analog-digital. IEEE Global Communications Conf, p.4066-4071.

[19]Bogale TE, Le LB, Haghighat A, 2015. User scheduling for massive MIMO OFDMA systems with hybrid analog-digital beamforming. IEEE Int Conf on Communications, p.1757-1762.

[20]Bogale TE, Le LB, Haghighat A, et al., 2016. On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming. IEEE Trans Wirel Commun, 15(5):3311-3326.

[21]Bogale TE, Wang X, Le LB, 2017. mmWave communication enabling techniques for 5G wireless systems: a link level perspective. In: Mumtaz S, Rodriguez J, Dai LL (Eds.), mmWave Massive MIMO: a Paradigm for 5G. Academic Press, London, p.195-225.

[22]Bohagen F, Orten P, Oien GE, 2007. Design of optimal high-rank line-of-sight MIMO channels. IEEE Trans Wirel Commun, 6(4):1420-1425.

[23]Bohagen F, Orten P, Oien GE, 2009. On spherical vs. plane wave modeling of line-of-sight MIMO channels. IEEE Trans Commun, 57(3):841-849.

[24]Chae CB, Shim S, Heath RW, 2008. Block diagonalized vector perturbation for multiuser MIMO systems. IEEE Trans Wirel Commun, 7(11):4051-4057.

[25]Chataut R, Akl R, 2020. Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction. Sensors, 20(10):2753.

[26]Chen L, Yang Y, Chen XH, et al., 2011. Multi-stage beamforming codebook for 60GHz WPAN. 6th Int ICST Conf on Communications and Networking in China, p.361-365.

[27]Chen R, Li JD, Li CL, et al., 2012. Lattice-reduction-aided MMSE precoding for correlated MIMO channels and performance analysis. J Syst Eng Electron, 23(1):16-23.

[28]Cho YS, Kim J, Yang WY, et al., 2010. MIMO: channel capacity. In: Cho YS, Kim J, Yang WY, et al. (Eds.), MIMO-OFDM Wireless Communications with MATLAB. Wiley-IEEE Press, Singapore, p.263-280.

[29]Costa M, 1983. Writing on dirty paper (Corresp.). IEEE Trans Inform Theory, 29(3):439-441.

[30]Dahlman E, Parkvall S, Sköld J, 2011. OFDM transmission. In: Dahlman E, Parkvall S, Sköld J (Eds.), 4G LTE/LTE-Advanced for Mobile Broadband. Academic Press, Boston, p.27-44.

[31]Das S, 2008. Smart antenna design for wireless communication using adaptive beam-forming approach. IEEE Region 10 Conf, p.1-5.

[32]Deka K, Thomas A, Sharma S, 2021. OTFS-SCMA: a code-domain NOMA approach for orthogonal time frequency space modulation. IEEE Trans Commun, 69(8):5043-5058.

[33]Deloitte, 2018. Fasten Your Seatbelts: in-Flight Connectivity Takes Off. Technical Report, Deloitte, London.

[34]Dinc E, Vondra M, Cavdar C, 2017. Multi-user beamforming and ground station deployment for 5G direct air-to-ground communication. Proc IEEE Global Communications Conf, p.1-7.

[35]Djemamar Y, Ibnyaich S, Zeroual A, 2022. Space-time block coding techniques for MIMO 2×2 system using Walsh-Hadamard codes. J Inform Commun Converg Eng, 20(1):1-7.

[36]Du LT, Li LH, Zhang P, et al., 2019. Vector perturbation precoding under imperfect CSI and inaccurate power scaling factors. IEEE Access, 7:89162-89171.

[37]Enku YK, Bai BM, Wan F, et al., 2021. Two-dimensional convolutional neural network-based signal detection for OTFS systems. IEEE Wirel Commun Lett, 10(11):2514-2518.

[38]Enku YK, Bai BM, Li SY, et al., 2022. Deep-learning based signal detection for MIMO-OTFS systems. IEEE Int Conf on Communications Workshops, p.1-5.

[39]Erturk MC, Aksan Y, 2016. A tool for beamforming and real-time link budget analysis in aeronautical communications using kinematics. Int J Aerosp Eng, 2016:9153240.

[40]ETSI, 2020. Physical Channels and Modulation (Release 16). 3GPP TS 38.211 V16.1.0 (2020-03).

[41]Euroconsult, 2022. In-Flight Connectivity Market Set to Double in Coming Decade. https://nova.space/press-release/in-flight-connectivity-market-set-to-double-in-coming-decade/ [Accessed on May 26, 2023].

[42]Fakoukakis FE, Kaifas TN, Vafiadis EE, et al., 2015. Design and implementation of Butler matrix-based beam-forming networks for low sidelobe level electronically scanned arrays. Int J Microw Wirel Technol, 7(1):69-79.

[43]Fatema N, Hua G, Xiang Y, et al., 2018. Massive MIMO linear precoding: a survey. IEEE Syst J, 12(4):3920-3931.

[44]Gans MJ, 2009. Aircraft free-space MIMO communications. Conf Record of the Forty-Third Asilomar Conf on Signals, Systems and Computers, p.663-666.

[45]Gao XY, Lu ZH, Han YJ, et al., 2014. Near-optimal signal detection with low complexity based on Gauss-Seidel method for uplink large-scale MIMO systems. IEEE Int Symp on Broadband Multimedia Systems and Broadcasting, p.1-4.

[46]Gesbert D, Bölcskei H, Gore DA, et al., 2002. Outdoor MIMO wireless channels: models and performance prediction. IEEE Trans Commun, 50(12):1926-1934.

[47]Giordani M, Polese M, Roy A, et al., 2019. A tutorial on beam management for 3GPP NR at mmWave frequencies. IEEE Commun Surv Tutor, 21(1):173-196.

[48]Goldsmith A, Jafar SA, Jindal N, et al., 2003. Capacity limits of MIMO channels. IEEE J Sel Areas Commun, 21(5):684-702.

[49]Gotsis KA, Sahalos JN, 2011. Beamforming in 3G and 4G mobile communications: the switched-beam approach. In: Maícas JP (Ed.), Recent Developments in Mobile Communications—a Multidisciplinary Approach. IntechOpen.

[50]Grous A, 2017. Sky High Economics. Technical Report, London School of Economics and Political Science, London.

[51]Guenach M, 2019. Comparison of lattice-reduction-aided vector perturbation and Tomlinson-Harashima precoding. IEEE Wireless Communications and Networking Conf, p.1-5.

[52]Guha H, Mukherjee A, Vasanthi MS, 2018. Hybrid beamforming based mmWave for future generation communication. Int Res J Eng Technol, 5(4):1045-1050.

[53]Hadani R, Rakib S, Tsatsanis M, et al., 2017. Orthogonal time frequency space modulation. IEEE Wireless Communications and Networking Conf, p.1-6.

[54]Han SF, I CL, Xu ZK, et al., 2015. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 53(1):186-194.

[55]Hanzo L, Liew TH, Yeap BL, 2002. Convolutional and block coding. In: Turbo Coding, Turbo Equalisation and Space-Time Coding: for Transmission over Fading Channels. John Wiley & Sons Ltd., England.

[56]Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):436-453.

[57]Hu Q, Gao FF, Zhang H, et al., 2021. Deep learning for channel estimation: interpretation, performance, and comparison. IEEE Trans Wirel Commun, 20(4):2398-2412.

[58]Huang HJ, Song YW, Yang J, et al., 2019. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Trans Veh Technol, 68(3):3027-3032.

[59]Huang ZE, Pan JY, 2015. Coordinative switch beamforming scheduler for guaranteed service with service area subsectorization in next generation cellular network. IEEE Wireless Communications and Networking Conf, p.1000-1005.

[60]Hughes BL, 2000. Differential space-time modulation. IEEE Trans Inform Theory, 46(7):2567-2578.

[61]Hur S, Kim T, Love DJ, et al., 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 61(10):4391-4403.

[62]Ilcev SD, 2020. Analyses of space division multiple access (SDMA) schemes for global mobile satellite communications (GMSC). TransNav Int J Mar Navig Saf Sea Transp, 14(4):821-830.

[63]Inmarsat, 2022. Passenger Experience Survey 2022. Technical Report, Inmarsat, London.

[64]International Air Transport Association, 2018. Citing Electronic Sources of Information. https://barcelonalinks.org/es/news/iata-forecast-predicts-8-2-billion-air-travelers-in-2037-_es/ [Accessed on Mar. 15, 2023].

[65]Islam MS, Jessy T, Hassan MS, et al., 2016. Suitable beamforming technique for 5G wireless communications. Int Conf on Computing, Communication and Automation, p.1554-1559.

[66]ITU, 2015. Propagation Data and Prediction Methods Required for the Design of Terrestrial Line-of-Sight Systems. Technical Report, Geneva.

[67]Jacobsson S, Durisi G, Coldrey M, et al., 2017. Quantized precoding for massive MU-MIMO. IEEE Trans Commun, 65(11):4670-4684.

[68]Kaushal H, Kaddoum G, 2017. Optical communication in space: challenges and mitigation techniques. IEEE Commun Surv Tut, 19(1):57-96.

[69]Kesavan U, Islam MR, Abdullah K, et al., 2014. Rain attenuation prediction for higher frequencies in microwave communication using frequency scaling technique. Proc Int Conf on Computer and Communication Engineering, p.217-219.

[70]Köse EC, Yayilkan A, Kulac S, et al., 2022. Contemporary approaches to mitigate pilot contamination in massive MIMO systems. Eur J Sci Technol, 1(36):197-206.

[71]Koutsopoulos I, Tassiulas L, 2002. Adaptive resource allocation in SDMA-based wireless broadband networks with OFDM signaling. Proc 21st Annual Joint Conf of the IEEE Computer and Communications Societies, p.1376-1385.

[72]Kulkarni MN, Ghosh A, Andrews JG, 2016. A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans Commun, 64(5):1952-1967.

[73]Kutty S, Sen D, 2016. Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun Surv Tut, 18(2):949-973.

[74]Kyritsi P, Chizhik D, 2002. Capacity of multiple antenna systems in free space and above perfect ground. IEEE Commun Lett, 6(8):325-327.

[75]Larsson EG, Stoica P, 2003. Transmit diversity and space-time coding. In: Larsson EG, Stoica P (Eds.), Space-Time Block Coding for Wireless Communications. Cambridge University Press, Cambridge, p.79-96.

[76]Lee BM, 2018. Simplified antenna group determination of RS overhead reduced massive MIMO for wireless sensor networks. Sensors, 18(1):84.

[77]Li A, Masouros C, 2015. A constellation scaling approach to vector perturbation for adaptive modulation in MU-MIMO. IEEE Wirel Commun Lett, 4(3):289-292.

[78]Li J, Lei L, Liu WK, et al., 2012. An improved semi-Markov smooth mobility model for aeronautical ad hoc networks. Proc 8th Int Conf on Wireless Communications, Networking and Mobile Computing, p.1-4.

[79]Liu Y, Liu JH, Wu Q, et al., 2019. A near-optimal iterative linear precoding with low complexity for massive MIMO systems. IEEE Commun Lett, 23(6):1105-1108.

[80]Lu AA, Gao XQ, Zhong W, et al., 2019. Robust transmission for massive MIMO downlink with imperfect CSI. IEEE Trans Commun, 67(8):5362-5376.

[81]Lu Y, An JP, 2008. A type of adaptive beamforming for self-interference cancellation over aeronautical channel. Proc 4th Int Conf on Wireless Communications, Networking and Mobile Computing, p.1-4.

[82]Lyu TK, 2016. Capacity of multi-user MIMO systems with MMSE and ZF precoding. IEEE Conf on Computer Communications Workshops, p.1083-1084.

[83]Mahmoud MSB, Guerber C, Larrieu N, et al., 2014. Current communication radio systems for data link. In: Mahmoud MSB, Guerber C, Larrieu N, et al. (Eds.), Aeronautical Air–Ground Data Link Communications. John Wiley & Sons, Inc., Hoboken, p.1-48.

[84]Masouros C, Sellathurai M, Ratnarajah T, 2013. Computationally efficient vector perturbation precoding using thresholded optimization. IEEE Trans Commun, 61(5):1880-1890.

[85]Mohsan SAH, Li YL, Sadiq M, et al., 2023. Recent advances, future trends, applications and challenges of Internet of Underwater Things (IoUT): a comprehensive review. J Mar Sci Eng, 11(1):124.

[86]Mozaffari M, Saad W, Bennis M, et al., 2019. A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun Surv Tut, 21(3):2334-2360.

[87]Nalepka K, Mitchell E, Sandbhor R, 2023. Global in-Flight Entertainment and Connectivity Market Size by Product, by Class, by Aircraft Type, by Geographic Scope and Forecast. Technical Report No. 254667, Washington DC.

[88]Nawaz SJ, Khan NM, Tiwana MI, et al., 2015. Airborne Internet access through submarine optical fiber cables. IEEE Trans Aerosp Electron Syst, 51(1):167-177.

[89]Neumann D, Wiese T, Utschick W, 2018. Learning the MMSE channel estimator. IEEE Trans Signal Process, 66(11):2905-2917.

[90]Nwalozie GC, Okorogu VN, Maduadichie SS, et al., 2013. A simple comparative evaluation of adaptive beam forming algorithms. Int J Eng Innov Technol, 2(7):417-424.

[91]Parfait T, Kuang YJ, Jerry K, 2014. Performance analysis and comparison of ZF and MRT based downlink massive MIMO systems. 6th Int Conf on Ubiquitous and Future Networks, p.383-388.

[92]Pathak P, Pandey R, 2014. A novel Aalamouti STBC technique for MIMO system using 16-QAM modulation and moving average filter. Int J Eng Res Appl, 4(8):49-55.

[93]Peel CB, Hochwald BM, Swindlehurst AL, 2005. A vector-perturbation technique for near-capacity multiantenna multiuser communication—part I: channel inversion and regularization. IEEE Trans Commun, 53(1):195-202.

[94]Pramono S, Triyono E, Subagio BB, 2020. Performance of leakage based precoding scheme for minimizing interference. J Commun, 15(2):214-220.

[95]Qiang XW, Liu Y, Feng QX, et al., 2020. Approximative matrix inversion based linear precoding for massive MIMO systems. Int Conf on Computing, Networking and Communications, p.950-955.

[96]Qiao X, Zhang Y, Yang LX, 2018. Conjugate gradient method based linear precoding with low-complexity for massive MIMO systems. IEEE 4th Int Conf on Computer and Communications, p.420-424.

[97]Rao L, Pant M, Malviya L, et al., 2021. 5G beamforming techniques for the coverage of intended directions in modern wireless communication: in-depth review. Int J Microw Wirel Technol, 13(10):1039-1062.

[98]Rasekh M, Seydnejad SR, 2014. Design of an adaptive wideband beamforming algorithm for conformal arrays. IEEE Commun Lett, 18(11):1955-1958.

[99]Ren H, Arigong B, Zhou M, et al., 2016. A novel design of 4 × 4 Butler matrix with relatively flexible phase differences. IEEE Antenn Wirel Propag Lett, 15:1277-1280.

[100]Samad MA, Diba FD, Choi DY, 2021. A survey of rain fade models for Earth–space telecommunication links—taxonomy, methods, and comparative study. Remote Sens, 13(10):1965.

[101]Santumon SD, Sujatha BR, 2012. Space-time block coding (STBC) for wireless networks. Int J Distrib Parall Syst, 3(4):183-195.

[102]Sarangi AK, Datta A, 2018. Capacity comparison of SISO, SIMO, MISO & MIMO systems. 2nd Int Conf on Computing Methodologies and Communication, p.798-801.

[103]Simeone O, Spagnolini U, Bar-Ness Y, 2003. Linear and non-linear precoding/decoding for MIMO systems using the fading correlation at the transmitter. 4th IEEE Workshop on Signal Processing Advances in Wireless Communications, p.6-10.

[104]Sohrabi F, Yu W, 2017. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE J Sel Areas Commun, 35(7):1432-1443.

[105]Soltani M, Pourahmadi V, Mirzaei A, et al., 2019. Deep learning-based channel estimation. IEEE Commun Lett, 23(4):652-655.

[106]Statista, 2022. Number of Scheduled Passengers Boarded by the Global Airline Industry from 2004 to 2022. https://www.statista.com/statistics/564717/airline-industry-passenger-traffic-globally/ [Accessed on Mar. 15, 2023].

[107]Su WF, Matyjas JD, Gans MJ, et al., 2013. Maximum achievable capacity in airborne MIMO communications with arbitrary alignments of linear transceiver antenna arrays. IEEE Trans Wirel Commun, 12(11):5584-5593.

[108]Sun S, Rappaport TS, Heath RW, et al., 2014. MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun Mag, 52(12):110-121.

[109]Tadayon N, Kaddoum G, Noumeir R, 2016. Inflight broadband connectivity using cellular networks. IEEE Access, 4:1595-1606.

[110]Taherzadeh M, Mobasher A, Khandani AK, 2007. Communication over MIMO broadcast channels using lattice-basis reduction. IEEE Trans Inform Theory, 53(12):4567-4582.

[111]Tarokh V, Seshadri N, Calderbank AR, 1998. Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans Inform Theory, 44(2):744-765.

[112]Tart A, Trump T, 2014. Two dimensional robust beamforming for air-ground communication system. Proc Integrated Communications, Navigation and Surveillance Conf, p.B2-1-B2-8.

[113]Thangavel G, 2015. Adaptive beam forming algorithms for MIMO antenna. Int J Innov Technol Explor Eng, 4(8):9-12.

[114]Tiwari N, Rao TR, 2015. A switched beam antenna array with Butler matrix network using substrate integrated waveguide technology for 60 GHz communications. Int Conf on Advances in Computing, Communications and Informatics, p.2152-2157.

[115]Tsai WS, Lu HH, Li CY, et al., 2015. A 20-m/40-Gb/s 1550-nm DFB LD-based FSO link. IEEE Photonics J, 7(6):7905907.

[116]Tsang YM, Poon ASY, Addepalli S, 2011. Coding the beams: improving beamforming training in mmWave communication system. IEEE Global Telecommunications Conf, p.1-6.

[117]Venkateswaran V, van der Veen AJ, 2010. Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans Signal Process, 58(8):4131-4143.

[118]Ventura-Traveset J, Caire G, Biglieri E, et al., 1997. Impact of diversity reception on fading channels with coded modulation—part I: coherent detection. IEEE Trans Commun, 45(5):563-572.

[119]Vondra M, Dinc E, Prytz M, et al., 2017. Performance study on seamless DA2GC for aircraft passengers toward 5G. IEEE Commun Mag, 55(11):194-201.

[120]Vondra M, Dinc E, Cavdar C, 2018. Coordinated resource allocation scheme for 5G direct air-to-ground communication. Proc 24th European Wireless Conf, p.1-7.

[121]Wang JY, Lan Z, Pyo CW, et al., 2009. Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE J Sel Areas Commun, 27(8):1390-1399.

[122]Wang X, Hou XL, Jiang HL, et al., 2016. Large scale experimental trial of 5G mobile communication systems—TDD massive MIMO with linear and non-linear precoding schemes. IEEE 27th Annual Int Symp on Personal, Indoor, and Mobile Radio Communications, p.1-5.

[123]Wei ZQ, Yuan WJ, Li SY, et al., 2021. Orthogonal time-frequency space modulation: a promising next-generation waveform. IEEE Wirel Commun, 28(4):136-144.

[124]Windpassinger C, Fischer RFH, Huber JB, 2004. Lattice-reduction-aided broadcast precoding. IEEE Trans Commun, 52(12):2057-2060.

[125]Wu M, Yin B, Wang GH, et al., 2014. Large-scale MIMO detection for 3GPP LTE: algorithms and FPGA implementations. IEEE J Sel Top Signal Process, 8(5):916-929.

[126]Wübben D, Seethaler D, Jaldén J, et al., 2011. Lattice reduction. IEEE Signal Process Mag, 28(3):70-91.

[127]Xu ZY, Sadler BM, 2008. Ultraviolet communications: potential and state-of-the-art. IEEE Commun Mag, 46(5):67-73.

[128]Ying DW, Vook FW, Thomas TA, et al., 2015. Hybrid structure in massive MIMO: achieving large sum rate with fewer RF chains. IEEE Int Conf on Communications, p.2344-2349.

[129]Yuan WJ, Li SY, Wei ZQ, et al., 2023. New delay Doppler communication paradigm in 6G era: a survey of orthogonal time frequency space (OTFS). China Commun, 20(6):1-25.

[130]Zarei S, Gerstacker W, Schober R, 2016. Low-complexity hybrid linear/Tomlinson-Harashima precoding for downlink large-scale MU-MIMO systems. IEEE Globecom Workshops, p.1-7.

[131]Zarkadas K, Dimitrakopoulos G, 2021. Rain attenuation in 5G wireless broadband backhaul link and develop (IoT) rainfall monitoring system. Int J Adv Comput Sci Appl, 12(5):1-8.

[132]Zhang JA, Huang XJ, Dyadyuk V, et al., 2015. Massive hybrid antenna array for millimeter-wave cellular communications. IEEE Wirel Commun, 22(1):79-87.

[133]Zhang L, Cai YL, de Lamare RC, et al., 2016. Multi-branch vector perturbation precoding design using lattice reduction for MU-MIMO systems. IEEE 83rd Vehicular Technology Conf, p.1-5.

[134]Zou L, He ZS, 2013. MVDR method for the whole conformal arrays. Int Conf of Intelligence Computation and Evolutionary Computation, p.917-921.

[135]Zu KK, de Lamare RC, 2012. Low-complexity lattice reduction-aided regularized block diagonalization for MU-MIMO systems. IEEE Commun Lett, 16(6):925-928.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE