Full Text:   <1989>

Summary:  <234>

CLC number: TN92

On-line Access: 2017-06-30

Received: 2016-12-14

Revision Accepted: 2017-03-21

Crosschecked: 2017-06-02

Cited: 1

Clicked: 2079

Citations:  Bibtex RefMan EndNote GB/T7714


Ehab Ali


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.6 P.753-772


Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research

Author(s):  Ehab Ali, Mahamod Ismail, Rosdiadee Nordin, Nor Fadzilah Abdulah

Affiliation(s):  Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia

Corresponding email(s):   ehabalisahli@siswa.ukm.edu.my, mahamod@ukm.edu.my, adee@ukm.edu.my, fadzilah.abdullah@ukm.edu.my

Key Words:  Beamforming classifications, Massive MIMO, Hybrid beamforming, Millimetre-wave beamforming

Ehab Ali, Mahamod Ismail, Rosdiadee Nordin, Nor Fadzilah Abdulah. Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(6): 753-772.

@article{title="Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research",
author="Ehab Ali, Mahamod Ismail, Rosdiadee Nordin, Nor Fadzilah Abdulah",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research
%A Ehab Ali
%A Mahamod Ismail
%A Rosdiadee Nordin
%A Nor Fadzilah Abdulah
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 6
%P 753-772
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601817

T1 - Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research
A1 - Ehab Ali
A1 - Mahamod Ismail
A1 - Rosdiadee Nordin
A1 - Nor Fadzilah Abdulah
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 6
SP - 753
EP - 772
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601817

Massive multiple-input multiple-output (MIMO) systems combined with beamforming antenna array technologies are expected to play a key role in next-generation wireless communication systems (5G), which will be deployed in 2020 and beyond. The main objective of this review paper is to discuss the state-of-the-art research on the most favourable types of beamforming techniques that can be deployed in massive MIMO systems and to clarify the importance of beamforming techniques in massive MIMO systems for eliminating and resolving the many technical hitches that massive MIMO system implementation faces. Classifications of optimal beamforming techniques that are used in wireless communication systems are reviewed in detail to determine which techniques are more suitable for deployment in massive MIMO systems to improve system throughput and reduce intra-and inter-cell interference. To overcome the limitations in the literature, we have suggested an optimal beamforming technique that can provide the highest performance in massive MIMO systems, satisfying the requirements of next-generation wireless communication systems.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ahmadi, H., Farhang, A., Marchetti, N., et al., 2016. A game theoretic approach for pilot contamination avoidance in massive MIMO. IEEE Wirel. Commun. Lett., 5(1):12-15.

[2]Andrews, J.G., Buzzi, S., Choi, W., et al., 2014. What will 5G be IEEE J. Sel. Areas Commun., 32(6):1065-1082.

[3]Arablouei, R., Dogancay, K., 2012. Linearly-constrained recursive total least-squares algorithm. IEEE Signal Process. Lett., 19(12):821-824.

[4]Arunitha, A., Gunasekaran, T., Kumar, N.S., et al., 2015. Adaptive beam forming algorithms for MIMO antenna. Int. J. Innov. Technol. Explor. Eng., 14(8):9-12.

[5]Ashikhmin, A., Marzetta, T., 2012. Pilot contamination precoding in multi-cell large scale antenna systems. IEEE Int. Symp. on Information Theory Proc., p.1137-1141.

[6]Bae, J.S., Choi, Y.S., Kim, J.S., et al., 2014. Architecture and performance evaluation of mmwave based 5G mobile communication system. Int. Conf. on Information and Communication Technology Convergence, p.847-851.

[7]Barua, S., Lam, S.C., Ghosa, P., et al., 2015. A survey of direction of arrival estimation techniques and implementation of channel estimation based on SCME. 12th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, p.1-5.

[8]Behjati, M., Ismail, M., Nordin, R., 2015. Limited feedback MU-MIMO in LTE-A system: concepts, performance, and future works. Wirel. Pers. Commun., 84(2):935-957.

[9]Bhotto, M.Z.A., Bajić, I.V., 2015. Constant modulus blind adaptive beamforming based on unscented Kalman filtering. IEEE Signal Process. Lett., 22(4):474-478.

[10]Björnson, E., Sanguinetti, L., Hoydis, J., et al., 2014. Designing multi-user MIMO for energy efficiency: when is massive MIMO the answer IEEE Wireless Communications and Networking Conf., p.242-247.

[11]Bogale, T.E., Le, L.B., 2014. Beamforming for multiuser massive MIMO systems: digital versus hybrid analog-digital. IEEE Global Communications Conf., p.4066-4071.

[12]Bogale, T.E., Le, L.B., 2015. Massive MIMO and millimeter wave for 5G wireless HetNet: potentials and challenges. arXiv:1510.06359.

[13]Bogale, T.E., Le, L.B., Haghighat, A., 2015. User scheduling for massive MIMO OFDMA systems with hybrid analog-digital beamforming. IEEE Int. Conf. on Communications, p.1757-1762.

[14]Bogale, T.E., Le, L.B., Haghighat, A., et al., 2016. On the number of RF chains and phase shifters, and scheduling design with hybrid analog–digital beamforming. IEEE Trans. Wirel. Commun., 15(5):3311-3326.

[15]Butler, J., Ralph, L., 1961. Beam-forming matrix simplifies design of electronically scanned antennas. Electron. Des., 9:170-173.

[16]Carlson, B.D., 1988. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst., 24(4):397-401.

[17]Carton, I., Fan, W., Pedersen, G.F., 2015. A frequency invariant beamformer for channel parameter estimation in millimeter wave bands. Int. Symp. on Antennas and Propagation, p.1-4.

[18]Chen, C.E., 2015. An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wirel. Commun. Lett., 4(3):285-288.

[19]Chen, X.M., Zhang, Z.Y., Chen, H.H., et al., 2015. Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag., 53(4): 133-141.

[20]Chuang, S.F., Wu, W.R., Liu, Y.T., 2015. High-resolution AoA estimation for hybrid antenna arrays. IEEE Trans. Antennas Propag., 63(7):2955-2968.

[21]Cudak, M., Ghosh, A., Kovarik, T., et al., 2013. Moving towards mmwave-based beyond-4G (B-4G) technology. IEEE 77th Vehicular Technology Conf., p.1-5.

[22]Dai, L.L., Gao, X.Y., Quan, J.G., et al., 2015a. Near-optimal hybrid analog and digital precoding for downlink mmwave massive MIMO systems. IEEE Int. Conf. on Communications, p.1334-1339.

[23]Dai, L.L., Gao, X.Y., Wang, Z.C., 2015b. Energy-efficient hybrid precoding based on successive interference cancelation for millimeter-wave massive MIMO systems. IEEE Radio and Antenna Days of the Indian Ocean, p.1-2.

[24]Dai, M.B., Clerckx, B., 2016. Hybrid precoding for physical layer multicasting. IEEE Commun. Lett., 20(2):228-231.

[25]Darzi, S., Kiong, T.S., Islam, M.T., et al., 2014. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm. Sci. World J., Article ID 724639.

[26]Darzi, S., Kiong, T.S., Islam, M.T., et al., 2016. A memory-based gravitational search algorithm for enhancing minimum variance distortionless response beamforming. Appl. Soft Comput., 47:103-118.

[27]de Carvalho, E., Björnson, E., Larsson, E.G., et al., 2016. Random access for massive MIMO systems with intra-cell pilot contamination. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3361-3365.

[28]Frost, O.L., 1972. An algorithm for linearly constrained adaptive array processing. Proc. IEEE, 60(8):926-935.

[29]Garcia, N., Wymeersch, H., Larsson, E.G., et al., 2017. Direct localization for massive MIMO. IEEE Trans. Signal Process., 65(10):2475-2487.

[30]Ghauch, H., Kim, T., Bengtsson, M., et al., 2016. Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE J. Sel. Topics Signal Process., 10(3):528-542.

[31]Gotsis, K.A., Sahalos, J.N., 2011. Beamforming in 3G and 4G mobile communications: the switched-beam approach. In: Maícas, J.P. (Ed.), A Multidisciplinary Approach. InTech, p.201-216.

[32]Gozalves, J., 2016. Fifth-generation technologies trials [Mobile Radio]. IEEE Veh. Technol. Mag., 11(2):5-13.

[33]Gross, F., 2005. Smart Antennas for Wireless Communications. McGraw-Hill Professional.

[34]Guerra, A., Guidi, F., Dardari, D., 2015. Position and orientation error bound for wideband massive antenna arrays. IEEE Int. Conf. on Communication Workshop, p.853-858.

[35]Guney, K., Onay, M., 2007. Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm. Progr. Electromagn. Res., 70:21-36.

[36]Guo, K.F., Guo, Y., Ascheid, G., 2015. Distributed antennas aided secure communication in MU-massive-MIMO with QoS guarantee. IEEE 82nd Vehicular Technology Conf., p.1-7.

[37]Haghighat, A., 2014. Hybrid analog-digital beamforming: how many RF chains and phase shifters do we need arXiv:1410.2609.

[38]He, Q., Xiao, L.M., Zhong, X.F., et al., 2014. Performance of massive MIMO with zero-forcing beamforming and reduced downlink pilots. Int. Symp. on Wireless Personal Multimedia Communications, p.690-695.

[39]He, S.W., Huang, Y.M., Yang, L.X., et al., 2015. Energy efficient coordinated beamforming for multicell system: duality-based algorithm design and massive MIMO transition. IEEE Trans. Commun., 63(12):4920-4935.

[40]Heath, R.W., Gonzalez-Prelcic, N., Rangan, S., et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process., 10(3):436-453.

[41]Hu, A.Z., 2016. DOA-based beamforming for multi-cell massive MIMO systems. J. Commun. Networks, 18(5):735-743.

[42]Hu, A.Z., Lv, T.J., Gao, H., et al., 2013. Pilot design for large-scale multi-cell multiuser MIMO systems. IEEE Int. Conf. on Communications, p.5381-5385.

[43]Huang, L., Zhang, B., Ye, Z.F., 2015. Robust adaptive beamforming using a new projection approach. IEEE Int. Conf. on Digital Signal Processing, p.1181-1185.

[44]Huang, Z.E., Pan, J.Y., 2015. Coordinative switch beamforming scheduler for guaranteed service with service area subsectorization in next generation cellular network. IEEE Wireless Communications and Networking Conf., p.1000-1005.

[45]Huh, H., Caire, G., Papadopoulos, H.C., et al., 2012. Achieving “massive MIMO” spectral efficiency with a not-so-large number of antennas. IEEE Trans. Wirel. Commun., 11(9):3226-3239.

[46]Hur, S., Kim, T., Love, D.J., et al., 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun., 61(10):4391-4403.

[47]Ismail, M., Doumi, T.L., Gardiner, J.G., 1999. Performance enhancement of cellular topologies employing dynamic cell sectoring and base station antenna beam steering using time division multiple access. J. Kejurut., 11(1).

[48]Jamel, T.M., 2015. Performance enhancement of adaptive beamforming algorithms based on a combination method. 12th Int. Multi-conf. on Systems, Signals and Devices, p.1-6.

[49]Jin, S., Wang, X.Y., Li, Z., et al., 2014. Zero-forcing beamforming in massive MIMO systems with time-shifted pilots. IEEE Int. Conf. on Communications, p.4801-4806.

[50]Jin, S., Wang, X.Y., Li, Z., et al., 2016. On massive MIMO zero-forcing transceiver using time-shifted pilots. IEEE Trans. Veh. Technol., 65(1):59-74.

[51]Ju, M.Y., Qian, J., Li, Y.H., et al., 2013. Comparison of multiuser MIMO systems with MF, ZF and MMSE receivers. IEEE Int. Conf. on Information Science and Technology, p.1260-1263.

[52]Kammoun, A., Müller, A., Björnson, E., et al., 2014. Linear precoding based on polynomial expansion: large-scale multi-cell MIMO systems. IEEE J. Sel. Topics Signal Process., 8(5):861-875.

[53]Khan, M.R.R., Tuzlukov, V., 2011. Null steering beamforming for wireless communication system using genetic algorithm. IEEE Int. Conf. on Microwave Technology and Computational Electromagnetics, p.289-292.

[54]Kiani, S., Pezeshk, A.M., 2015. A comparative study of several array geometries for 2D DOA estimation. Proc. Comput. Sci., 58:18-25.

[55]Kim, C., Kim, T., Seol, J.Y., 2013. Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems. IEEE Globecom Workshops, p.61-65.

[56]Kutty, S., Sen, D., 2016. Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surv. Tutor., 18(2):949-973.

[57]Larsson, E.G., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2):186-195.

[58]Le, T.V.T., Kim, Y.H., 2015. Power and spectral efficiency of multi-pair massive antenna relaying systems with zer o-forcing relay beamforming. IEEE Commun. Lett., 19(2): 243-246.

[59]Lee, G., Sung, Y., Kountouris, M., 2015. On the performance of randomly directional beamforming between line-o f-sight and rich scattering channels. IEEE 16th Int. Workshop on Signal Processing Advances in Wireless Communications, p.141-145.

[60]Li, H.M., Leung, V.C.M., 2013. Low complexity zero-forcing beamforming for distributed massive MIMO systems in large public venues. J. Commun. Networks, 15(4):370-382.

[61]Li, M., Collings, I.B., Hanly, S.V., et al., 2016. Multicell coordinated scheduling with multiuser zero-forcing beamforming. IEEE Trans. Wirel. Commun., 15(2):827-842.

[62]Li, N.X., Wei, Z.X., Geng, J., et al., 2014. Multiuser hybrid beamforming for max-min SINR problem under 60 GHz wireless channel. IEEE 25th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communication, p.123-128.

[63]Liang, L., Xu, W., Dong, X.D., 2014. Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wirel. Commun. Lett., 3(6):653-656.

[64]Liao, B., Chan, S.C., 2011. DOA estimation of coherent signals for uniform linear arrays with mutual coupling. IEEE Int. Symp. on Circuits and Systems, p.377-380.

[65]Liao, W.C., Chang, T.H., Ma, W.K., et al., 2011. QoS-based transmit beamforming in the presence of eavesdroppers: an optimized artificial-noise-aided approach. IEEE Trans. Signal Process., 59(3):1202-1216.

[66]Liu, D.L., Ma, W.Z., Shao, S.H., et al., 2016. Performance analysis of TDD reciprocity calibration for massive MU-MIMO systems with ZF beamforming. IEEE Commun. Lett., 20(1):113-116.

[67]Liu, G.Y., Hou, X.Y., Wang, F., et al., 2016. Achieving 3D-MIMO with massive antennas from theory to practice with evaluation and field trial results. IEEE Syst. J., 11(1): 62-71.

[68]Liu, J., Liu, W.J., Liu, H.W., et al., 2016. Average SINR calculation of a persymmetric sample matrix inversion beamformer. IEEE Trans. Signal Process., 64(8):2135-2145.

[69]Liu, W., Weiss, S., 2010. Wideband Beamforming: Concepts and Techniques. John Wiley & Sons, UK.

[70]Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Topics Signal Process., 8(5):742-758.

[71]Masouros, C., Sellathurai, M., Ratnarajah, T., 2013. A low-complexity sequential encoder for threshold vector perturbation. IEEE Commun. Lett., 17(12):2225-2228.

[72]Mazrouei-Sebdani, M., Krzymień, W.A., Melzer, J., 2016. Massive MIMO with nonlinear precoding: large-system analysis. IEEE Trans. Veh. Technol., 65(4):2815-2820.

[73]Medbo, J., Börner, K., Haneda, K., et al., 2014. Channel modelling for the fifth generation mobile communications. 8th European Conf. on Antennas and Propagation, p.219-223.

[74]Murray, B.P., Zaghloul, A.I., 2014. A survey of cognitive beamforming techniques. United States National Committee of URSI National Radio Science Meeting, p.1.

[75]Ngo, H.Q., Larsson, E.G., 2013. Spectral efficiency of the multipair two-way relay channel with massive arrays. Asilomar Conf. on Signals, Systems and Computers, p.275-279.

[76]Ngo, H.Q., Marzetta, T.L., Larsson, E.G., 2011. Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3464-3467.

[77]Noh, S., Zoltowski, M.D., Love, D.J., 2016. Training sequence design for feedback assisted hybrid beamforming in massive MIMO systems. IEEE Trans. Commun., 64(1): 187-200.

[78]Oumar, O.A., Siyau, M.F., Sattar, T.P., 2012. Comparison between MUSIC and ESPRIT direction of arrival estimation algorithms for wireless communication systems. Int. Conf. on Future Generation Communication Technology, p.99-103.

[79]Pradhan, B.B., Roy, L.P., 2014. MIMO beamforming in spatially and temporally correlated channel. Annual IEEE India Conf., p.1-5.

[80]Rappaport, T.S., Sun, S., Mayzus, R., et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1:335-349.

[81]Rasekh, M., Seydnejad, S.R., 2014. Design of an adaptive wideband beamforming algorithm for conformal arrays. IEEE Commun. Lett., 18(11):1955-1958.

[82]Ren, H., Arigong, B., Zhou, M., et al., 2016. A novel design of 4 × 4 Butler matrix with relatively flexible phase differences. IEEE Antennas Wirel. Propag. Lett., 15:1277-1280.

[83]Roh, W., Seol, J.Y., Park, J., et al., 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag., 52(2):106-113.

[84]Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag., 30(1):40-60.

[85]Shang, G.W., Li, H., 2015. Spatial domain method based on 2D-DoA estimation against pilot contamination for mult i-cell massive MIMO systems. Int. Conf. on Wireless Communications and Signal Processing, p.1-5.

[86]Sivasundarapandian, S., 2015. Performance analysis of multi- band multiple beamforming Butler matrix for smart antenna systems. Int. Conf. on Robotics, Automation, Control and Embedded Systems, p.1-5.

[87]Sohrabi, F., Yu, W., 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Topics Signal Process., 10(3):501-513.

[88]Sun, S., Rappaport, T.S., Heath, R.W., et al., 2014. MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both IEEE Commun. Mag., 52(12):110-121.

[89]Swindlehurst, A.L., Ayanoglu, E., Heydari, P., et al., 2014. Millimeter-wave massive MIMO: the next wireless revolution IEEE Commun. Mag., 52(9):56-62.

[90]Tiwari, N., Rao, T.R., 2015. A switched beam antenna array with Butler matrix network using substrate integrated waveguide technology for 60 GHz communications. Int. Conf. on Advances in Computing, Communications and Informatics, p.2152-2157.

[91]Venkateswaran, V., van der Veen, A.J., 2010. Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans. Signal Process., 58(8):4131-4143.

[92]Vincent, F., Besson, O., 2004. Steering vector errors and diagonal loading. IEEE Proc.-Radar Sonar Navig., 151(6): 337-343.

[93]Vorobyov, S.A., Gershman, A.B., Luo, Z.Q., 2002. Robust adaptive beamforming using worst-case performance optimization via second-order cone programming. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.2901-2904.

[94]Vouyioukas, D., 2013. A survey on beamforming techniques for wireless MIMO relay networks. Int. J. Antennas Propag., 2013:1-21.

[95]Wagner, S., Couillet, R., Debbah, M., et al., 2012. Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback. IEEE Trans. Inform. Theory, 58(7):4509-4537.

[96]Wang, H.L., Pan, Z.G., Ni, J.Q., et al., 2013. A spatial domain based method against pilot contamination for multi-cell massive MIMO systems. Int. ICST Conf. on Communications and Networking in China, p.218-222.

[97]Wu, X.M., Cai, Y.L., de Lamare, R.C., et al., 2015. Adaptive blind widely linear CCM reduced-rank beamforming for large-scale antenna arrays. IEEE Int. Conf. on Digital Signal Processing, p.5-9.

[98]WWRF, 2014. 5G Vision and Requirements. IMT-2020 (5G) Promotion Group, China.

[99]Yan, L., Fang, X.M., Zhong, S., 2014. Quasi-full-duplex wireless communication scheme for high-speed railway. IEEE 80th Vehicular Technology Conf., p.1-6.

[100]Yang, H., Marzetta, T.L., 2013a. Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J. Sel. Areas Commun., 31(2):172-179.

[101]Yang, H., Marzetta, T.L., 2013b. Total energy efficiency of cellular large scale antenna system multiple access mobile networks. IEEE Online Conf. on Green Communications, p.27-32.

[102]Yang, H., Marzetta, T.L., 2015. Energy efficient design of massive MIMO: how many antennas IEEE 81st Vehicular Technology Conf., p.1-5.

[103]Yang, P., Yang, F., Nie, Z.P., 2010. DOA estimation with sub-array divided technique and interpolated ESPRIT algorithm on a cylindrical conformal array antenna. Progr. Electromagn. Res., 103:201-216.

[104]Yin, H.F., Gesbert, D., Filippou, M.C., et al., 2013. Decontaminating pilots in massive MIMO systems. IEEE Int. Conf. on Communications, p.3170-3175.

[105]Yin, H.F., Cottatellucci, L., Gesbert, D., et al., 2016. Robust pilot decontamination based on joint angle and power domain discrimination. IEEE Trans. Signal Process., 64(11):2990-3003.

[106]Ying, D.W., Vook, F.W., Thomas, T.A., et al., 2015. Hybrid structure in massive MIMO: achieving large sum rate with fewer RF chains. IEEE Int. Conf. on Communications, p.2344-2349.

[107]Zhang, R.N., Wang, S.C., Lu, X.F., et al., 2016. Two-dimensional DoA estimation for multipath propagation characterization using the array response of PN-sequences. IEEE Trans. Wirel. Commun., 15(1):341-356.

[108]Zou, L., He, Z.S., 2013. MVDR method for the whole conformal arrays. In: Du, Z. (Ed.), Intelligence Computation and Evolutionary Computation. Advances in Intelligent Systems and Computing, Vol. 180. Springer, Berlin, Heidelberg.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE