CLC number: TN929.5
On-line Access: 2021-04-15
Received: 2020-09-28
Revision Accepted: 2021-01-21
Crosschecked: 2021-02-22
Cited: 0
Clicked: 6919
Citations: Bibtex RefMan EndNote GB/T7714
Tao Zhou, Guichao Chen, Cheng-xiang Wang, Jiayi Zhang, Liu Liu, Yiqun Liang. Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 571-585.
@article{title="Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection",
author="Tao Zhou, Guichao Chen, Cheng-xiang Wang, Jiayi Zhang, Liu Liu, Yiqun Liang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="571-585",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000509"
}
%0 Journal Article
%T Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection
%A Tao Zhou
%A Guichao Chen
%A Cheng-xiang Wang
%A Jiayi Zhang
%A Liu Liu
%A Yiqun Liang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 571-585
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000509
TY - JOUR
T1 - Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection
A1 - Tao Zhou
A1 - Guichao Chen
A1 - Cheng-xiang Wang
A1 - Jiayi Zhang
A1 - Liu Liu
A1 - Yiqun Liang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 571
EP - 585
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000509
Abstract: In this study, we consider a multi-cell millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) system with a mixed analog-to-digital converter (mixed-ADC) and hybrid beamforming architecture, in which antenna selection is applied to achieve intelligent assignment of high- and low-resolution ADCs. Both exact and approximate closed-form expressions for the uplink achievable rate are derived in the case of maximum-ratio combining reception. The impacts on the achievable rate of user transmit power, number of radio frequency chains at a base station, ratio of high-resolution ADCs, number of propagation paths, and number of quantization bits are analyzed. It is shown that the user transmit power can be scaled down inversely proportional to the number of antennas at the base station. We propose an efficient power allocation scheme by solving a complementary geometric programming problem. In addition, the energy efficiency is investigated, and an optimal tradeoff between the achievable rate and power consumption is discussed. Our results will provide a useful reference for the study of mixed-ADC multi-cell mmWave massive MIMO systems with antenna selection.
[1]Abbas WB, Gomez-Cuba F, Zorzi M, 2017. Millimeter wave receiver efficiency: a comprehensive comparison of beamforming schemes with low resolution ADCs. IEEE Trans Wirel Commun, 16(12):8131-8146.
[2]Akdeniz MR, Liu YP, Samimi MK, et al., 2014. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Area Commun, 32(6):1164-1179.
[3]Ayach OE, Heath RW, Abu-Surra S, et al., 2012. Low complexity precoding for large millimeter wave MIMO systems. IEEE Int Conf on Communications, p.3724-3729.
[4]Boccardi F, Heath RW, Lozano A, et al., 2014. Five disruptive technology directions for 5G. IEEE Commun Mag, 52(2):74-80.
[5]Busari SA, Huq KMS, Mumtaz S, et al., 2018. Millimeter-wave massive MIMO communication for future wireless systems: a survey. IEEE Commun Surv Tut, 20(2):836-869.
[6]Choi J, Evans BL, Gatherer A, 2017. Resolution-adaptive hybrid MIMO architectures for millimeter wave communications. IEEE Trans Signal Process, 65(23):6201-6216.
[7]Choi J, Sung J, Evans BL, et al., 2018. Antenna selection for large-scale MIMO systems with low-resolution ADCs. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.3594-3598.
[8]Dai JX, Liu J, Wang JZ, et al., 2020. Asymptotic analysis of full-duplex large-scale MIMO systems with low-resolution ADCs/DACs over Rician fading channels. IEEE Syst J, 14(4):4832-4841.
[9]Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):436-453.
[10]Huang J, Wang CX, Feng R, et al., 2017. Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems. IEEE J Sel Areas Commun, 35(7):1591-1605.
[11]Huang J, Wang CX, Liu Y, et al., 2018. A novel 3D GBSM for mmWave MIMO channels. Sci China Inform Sci, 61(10):102305.
[12]Li YZ, Tao C, Seco-Granados G, et al., 2017. Channel estimation and performance analysis of one-bit massive MIMO systems. IEEE Trans Signal Process, 65(15):4075-4089.
[13]Liang N, Zhang WY, 2016. Mixed-ADC massive MIMO. IEEE J Sel Areas Commun, 34(4):983-997.
[14]Liu Y, Wang CX, Huang J, et al., 2019. Novel 3-D nonstationary mmWave massive MIMO channel models for 5G high-speed train wireless communications. IEEE Trans Veh Technol, 68(3):2077-2086.
[15]Mollén C, Choi J, Larsson EG, et al., 2017. Uplink performance of wideband massive MIMO with one-bit ADCs. IEEE Trans Wirel Commun, 16(1):87-100.
[16]Orhan O, Erkip E, Rangan S, 2015. Low power analog-to-digital conversion in millimeter wave systems: impact of resolution and bandwidth on performance. Information Theory and Applications Workshop, p.191-198.
[17]Qiao D, Tan WQ, Zhao YY, et al., 2016. Spectral efficiency for massive MIMO zero-forcing receiver with low-resolution ADC. 8th Int Conf on Wireless Communications & Signal Processing, p.1-6.
[18]Rahimian S, Jing YD, Ardakani M, 2020. Performance analysis of massive MIMO multi-way relay networks with low-resolution ADCs. IEEE Trans Wirel Commun, 19(9):5794-5806.
[19]Tan WQ, Jin S, Wen CK, et al., 2016. Spectral efficiency of mixed-ADC receivers for massive MIMO systems. IEEE Access, 4:7841-7846.
[20]Venkateswaran V, van der Veen A J, 2010. Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans Signal Process, 58(8):4131-4143.
[21]Wang CX, Haider F, Gao XQ, et al., 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 52(2):122-130.
[22]Xu JD, Xu W, Zhang H, et al., 2019. Performance analysis of multi-cell millimeter-wave massive MIMO networks with low-precision ADCs. IEEE Trans Commun, 67(1):302-317.
[23]You XH, Wang CX, Huang J, et al., 2021. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inform Sci, 64(1):110301.
[24]Yu XH, Shen JC, Zhang J, et al., 2016. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):485-500.
[25]Zhang JY, Dai LL, He ZY, et al., 2017. Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels. IEEE J Sel Areas Commun, 35(6):1327-1338.
[26]Zhang JY, Dai LL, He ZY, et al., 2019. Mixed-ADC/DAC multipair massive MIMO relaying systems: performance analysis and power optimization. IEEE Trans Commun, 67(1):140-153.
[27]Zhang MJ, Tan WQ, Gao JH, et al., 2018. Spectral efficiency and power allocation for mixed-ADC massive MIMO system. China Commun, 15(3):112-127.
[28]Zhang Q, Jin S, Wong KK, et al., 2014. Power scaling of uplink massive MIMO systems with arbitrary-rank channel means. IEEE J Sel Top Signal Process, 8(5):966-981.
[29]Zhang Y, Cheng YL, Zhou M, et al., 2020. Analysis of uplink cell-free massive MIMO system with mixed-ADC/DAC receiver. IEEE Syst J, in press.
[30]Zhou T, Tao C, Salous S, et al., 2018. Measurements and analysis of angular characteristics and spatial correlation for high-speed railway channels. IEEE Trans Intell Transp Syst, 19(2):357-367.
[31]Zhou T, Yang Y, Liu L, et al., 2020a. A dynamic 3-D wideband GBSM for cooperative massive MIMO channels in intelligent high-speed railway communication systems. IEEE Tran Wirel Commun, in press.
[32]Zhou T, Tao C, Salous S, et al., 2020b. Geometry-based multi-link channel modeling for high-speed train communication networks. IEEE Trans Intell Transp Syst, 21(3):1229-1238.
Open peer comments: Debate/Discuss/Question/Opinion
<1>