CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5377
MAO Zhi-hong, MA Li-zhuang, ZHAO Ming-xi, LI Zhong. Feature-preserving mesh denoising based on contextual discontinuities[J]. Journal of Zhejiang University Science A, 2006, 7(9): 1603-1608.
@article{title="Feature-preserving mesh denoising based on contextual discontinuities",
author="MAO Zhi-hong, MA Li-zhuang, ZHAO Ming-xi, LI Zhong",
journal="Journal of Zhejiang University Science A",
volume="7",
number="9",
pages="1603-1608",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1603"
}
%0 Journal Article
%T Feature-preserving mesh denoising based on contextual discontinuities
%A MAO Zhi-hong
%A MA Li-zhuang
%A ZHAO Ming-xi
%A LI Zhong
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 9
%P 1603-1608
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1603
TY - JOUR
T1 - Feature-preserving mesh denoising based on contextual discontinuities
A1 - MAO Zhi-hong
A1 - MA Li-zhuang
A1 - ZHAO Ming-xi
A1 - LI Zhong
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 9
SP - 1603
EP - 1608
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1603
Abstract: Motivated by the conception of Lee et al.(2005)’s mesh saliency and Chen (2005)’s contextual discontinuities, a novel adaptive smoothing approach is proposed for noise removal and feature preservation. mesh saliency is employed as a multiscale measure to detect contextual discontinuity for feature preserving and control of the smoothing speed. The proposed method is similar to the bilateral filter method. Comparative results demonstrate the simplicity and efficiency of the presented method, which makes it an excellent solution for smoothing 3D noisy meshes.
[1] Bajaj, C., Xu, G., 2001. Anisotropic Diffusion of Noisy Surfaces and Noisy Functions on Surfaces. TICAM Report, p.1-7.
[2] Chen, K., 2005. Adaptive smoothing via contextual and local discontinuities. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(10):1552-1567.
[3] Choudhury, P., Tumblin, J., 2004. The Trilateral Filter for High Contrast Images and Meshes. Proc. of the Eurographics Symposium on Rendering, Leuven, Belgium, p.186-196.
[4] Desbrun, M., Meyer, M., Schröder, P., Barr, A.H., 1999. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. Proceedings of SIGGRAPH’99, p.317-324.
[5] Desbrun, M., Meyer, M., Schröder, P., Barr, A.H., 2000. Anisotropic Feature-preserving Denoising of Height Fields and Bivariate Data. Proceedings of Graphics Interface 2000, Montreal, Quebec, Canada, p.145-152.
[6] Fleishman, S., Drori, I., Cohen-Or, D., 2003. Bilateral mesh denoising. ACM Trans. on Graphics, 22(3):950-953.
[7] Gonzalez, R.C., Woods, R.E., 2002. Digital Image Processing, 2 Ed. Publishing House of Electronics Industry, Beijing, p.175-220 (in Chinese).
[8] Hameiri, E., Shimshoni, H., 2003. Estimating the principal curvatures and the darboux frame from real 3D range data. IEEE Trans. on Systems Man and Cybernetics Part B (Cybernetics), 33(4):626-637.
[9] Hildebrandt, K., Polthier, K., 2003. Anisotropic Filtering of Non-linear Surface Features. Proc. of EUROGRAPHICS, Zuse Institute, Berlin, p.4-25.
[10] Itti, L., Koch, C., Niebur, E., 1998. A model of saliency based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(11):1254-1259.
[11] Jones, T.R., Durand, F., Desbrun, M., 2003. Non-iterative, feature-preserving mesh smoothing. ACM Trans. on Graphics, 22(3):943-949.
[12] Lee, C.H., Varshney, A., Jacobs, D.W., 2005. Mesh saliency. ACM Trans. on Graphics, 24(3):659-666.
[13] Ohtake, Y., Belyaev, A., Seidel, H.P., 2002. Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normal. Proceedings of Vision, Modeling, and Visualization (VMV) 2002, Erlangen, Germany, p.203-210.
[14] Tasdizen, T., Whitaker, R., Burchard, P., Asher, S., 2002. Geometric Surface Smoothing via Anisotropic Diffusion of the Normals. Proc. IEEE Visualization’02, p.125-132.
[15] Taubin, G., 1995a. A Signal Processing Approach to Fair Surface Design. Proceedings of SIGGRAPH’95. New York, USA, p.351-358.
[16] Taubin, G. 1995b. Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation. Proceedings of IEEE International Conference on Computer Vision ICCV-95, p.902-907.
[17] Tomasi, C., Manduchi, R., 1998. Bilateral Filtering for Gray and Color Images. Proc. IEEE Int. Conf. on Computer Vision, p.836-846.
Open peer comments: Debate/Discuss/Question/Opinion
<1>