Full Text:   <1952>

Summary:  <1476>

CLC number: TN929.53

On-line Access: 2016-10-08

Received: 2015-09-25

Revision Accepted: 2016-03-21

Crosschecked: 2016-09-18

Cited: 1

Clicked: 5540

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.10 P.1085-1094


Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX

Author(s):  Bo Li, Sung-kwon Park

Affiliation(s):  Department of Electronic Engineering, Hanyang University, Seoul 133791, Korea; more

Corresponding email(s):   bosign@gmail.com

Key Words:  Power saving class, State transition overhead, IEEE 802.16e/m, Quality of service

Bo Li, Sung-kwon Park. Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(10): 1085-1094.

@article{title="Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX",
author="Bo Li, Sung-kwon Park",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX
%A Bo Li
%A Sung-kwon Park
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 10
%P 1085-1094
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500314

T1 - Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX
A1 - Bo Li
A1 - Sung-kwon Park
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 10
SP - 1085
EP - 1094
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500314

In the IEEE 802.16e/m standard, three power saving classes (PSCs) are defined to save the energy of a mobile subscriber station (MSS). However, how to set the parameters of PSCs to maximize the power saving and guarantee the quality of service is not specified in the standard. Thus, many algorithms were proposed to set the PSCs in IEEE 802.16 networks. However, most of the proposed algorithms consider only the power saving for a single MSS. In the algorithms designed for multiple MSSs, the sleep state, which is set for activation of state transition overhead power, is not considered. The PSC setting for real-time connections in multiple MSSs with consideration of the state transition overhead is studied. The problem is non-deterministic polynomial time hard (NP-hard), and a suboptimal algorithm for the problem is proposed. Simulation results demonstrate that the energy saving of the proposed algorithm is higher than that of state-of-the-art algorithms and approaches the optimum limit.


概要:在IEEE802.16e/m标准中,为了节省移动台(mobile subscriber station, MSS)的电量,定义了三种省电类型(power saving classes, PSC)。但是,标准中并未规定如何设置PSC的参数来最大化省电量和确保服务质量(quality of service, QoS)。因此,很多人提出了设置PSC参数的算法。这些算法中大部分只考虑了针对一个MSS的PSC参数设置。在针对多个MSS的算法中,MSS从工作状态到休眠状态转变的电量损失又未被考虑。本论文研究针对多MSS的PSC参数设置问题,并考虑MSS从工作状态到休眠状态转变的电量损失。该问题是NP难问题。我们为该问题提出了一个次优的算法。仿真结果表明我们提出的算法的性能优于当前最好的算法,并且接近于最优极限值。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Baek, S., Son, J.J., Choi, B.D., 2009. Performance analysis of sleep mode operation for IEEE advanced WMAN. IEEE Int. Conf. on Communications Workshops, p.1-4.

[2]Broadband Wireless Access Working Group, 2006. IEEE Standard for Local and Metropolitan Area Networks: Part 16, 802.16e-2005, WG802.16.

[3]Broadband Wireless Access Working Group, 2011. IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Broadband Wireless Access Systems Amendment 3: Advanced Air Interface. WG802.16.

[4]Chen, C.Y., Hsu, C.H., Feng, K.T., 2010. Performance analysis and comparison of sleep mode operation for IEEE advanced broadband wireless networks. IEEE Int. Symp. on Personal Indoor and Mobile Radio Communications, p.1425-1430.

[5]Chen, T.C., Chen, J.C., 2009. Extended maximizing unavailability interval (eMUI): maximizing energy saving in IEEE 802.16e for mixing type I and type II PSCs. IEEE Commun. Lett., 13(2):151-153.

[6]Chen, T.C., Chen, J.C., Chen, Y.Y., 2009. Maximizing unavailability interval for energy saving in IEEE 802.16e wireless MANs. IEEE Trans. Mob. Comput., 8(4):475-487.

[7]Cookson, A.H., 1985. Particle Trap for Compressed Gas Insulated Transmission Systems. US Patent 4 554 399.

[8]Feng, H.W., Li, H.Y., 2013. Design of predictive and dynamic energy-efficient mechanisms for IEEE 802.16e. Wirel. Pers. Commun., 68(4):1807-1835.

[9]Hwang, E., Kim, K.J., Son, J.J., et al., 2010. The power-saving mechanism with periodic traffic indications in the IEEE 802.16e/m. IEEE Trans. Veh. Techol., 59(1):319-334.

[10]Jin, S., Choi, M., Choi, S., 2010. Performance analysis of IEEE sleep mode for heterogeneous traffic. IEEE Commun. Lett., 14(5):405-407.

[11]Jin, S., Chen, X., Qiao, D., et al., 2011. Adaptive sleep mode management in IEEE wireless metropolitan area networks. Comput. Netw., 55(16):3774-3783.

[12]Kalle, R., Raj, M., Das, D., 2009. A novel architecture for IEEE subscriber station for joint power saving class management. Int. Conf. on Communication Systems and Networks, p.1-10.

[13]Kao, C.C., Yang, S.R., Chen, H.C., 2012. A sleep-mode interleaving algorithm for layered-video multicast services in IEEE 802.16e networks. Comput. Netw., 56(16):3639-3654.

[14]Kim, R.Y., Mohanty, S., 2010. Advanced power management techniques in next-generation wireless networks. IEEE Commun. Mag., 40(3):94-102.

[15]Lin, Y.W., Wang, J.S., 2013. An adaptive QoS power saving scheme for mobile WiMAX. Wirel. Pers. Commun., 69(4):1435-1462.

[16]Liu, W.J., Feng, K.T., Tseng, P.H., 2014. Optimality of frame aggregation-based power-saving scheduling algorithm for broadband wireless networks. IEEE Trans. Wirel. Commun., 13(2):577-591.

[17]Park, Y., Hwang, G.U., 2009. An efficient power saving mechanism for delay-guaranteed services in IEEE 802.16e. IEICE Trans. Commun., E92-B(1):277-278.

[18]Park, Y., Leem, H., Sung, D.K., 2010. Power saving mechanism in IEEE . IEEE Vehicular Technology Conf., p.1-5.

[19]Seo, J.B., Lee, S.Q., Park, N.H., et al., 2004. Performance analysis of sleep mode operation in IEEE 802.16e. IEEE Vehicular Technology Conf., p.1169-1173.

[20]Tseng, Y.C., Chen, J.J., Yang, Y.C., 2011. Managing power saving classes in IEEE 802.16 wireless MANs: a fold-and-demultiplex method. IEEE Trans. Mob. Comput., 10(9):1237-1247.

[21]Wong, G.K.W., Zhang, Q., Tsang, D.H.K., 2010. Switching cost minimization in the IEEE 802.16e mobile WiMAX sleep mode operation. Wirel. Commun. Mob. Comput., 10(12):1576-1588.

[22]Wu, C.Y., Ho, H.J., Lee, S.L., 2012. Minimizing energy consumption with QoS constraints over IEEE 802.16e networks. Comput. Commun., 35(14):1672-1683.

[23]Xiao, Y., 2005. Energy saving management in the IEEE 802.16e wireless MAN. IEEE Commun. Lett., 9(7):595-597.

[24]Zhu, F., Wu, Y., Niu, Z., 2009. Delay analysis for sleep-based power saving mechanisms with downlink and uplink traffic. IEEE Commun. Lett., 13(8):615-617.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE