CLC number: TM923.61
On-line Access: 2017-03-10
Received: 2016-01-20
Revision Accepted: 2016-11-10
Crosschecked: 2017-02-21
Cited: 0
Clicked: 6678
Hui-pin Lin, Xiao-guang Jin, Liang Xie, Jin Hu, Zheng-yu Lu. A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 410-422.
@article{title="A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range",
author="Hui-pin Lin, Xiao-guang Jin, Liang Xie, Jin Hu, Zheng-yu Lu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="3",
pages="410-422",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1600029"
}
%0 Journal Article
%T A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range
%A Hui-pin Lin
%A Xiao-guang Jin
%A Liang Xie
%A Jin Hu
%A Zheng-yu Lu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 3
%P 410-422
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1600029
TY - JOUR
T1 - A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range
A1 - Hui-pin Lin
A1 - Xiao-guang Jin
A1 - Liang Xie
A1 - Jin Hu
A1 - Zheng-yu Lu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 3
SP - 410
EP - 422
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1600029
Abstract: This paper proposes a new variable-mode control strategy that is applicable for LLC resonant converters operating in a wide input voltage range. This control strategy incorporates advantages from full-bridge LLC resonant converters, half-bridge LLC resonant converters, variable-frequency control mode, and phase-shift control mode. Under this control strategy, different input voltages determine the different operating modes of the circuit. When the input voltage is very low, it works in a full-bridge circuit and variable frequency mode (FB_VF mode). When the input voltage rises to a certain level, it shifts to a full-bridge circuit and phase-shifting control mode (FB_PS mode). When the input voltage further increases, it shifts into a half-bridge circuit and variable frequency mode (HB_VF mode). Such shifts are enabled by the digital signal processor (DSP), which means that no auxiliary circuit is needed, just a modification of the software. From light load to heavy load, the primary MOSFET for the LLC resonant converter can realize zero-voltage switching (ZVS), and the secondary rectifier diode can realize zero-current switching (ZCS). With an LLC resonant converter prototype with a 300 W rated power and a 450 V output voltage, as well as a resonant converter with 20–120 V input voltage, the experiments verified the proposed control strategy. Experimental results showed that under this control strategy, the maximum converter efficiency reaches 95.7% and the range of the input voltage expands threefold.
[1]Chen, W., Hong, X.Y., Wang, S.R., et al., 2010. High efficiency soft-switched step-up DC-DC converter with hybrid mode LLC+C resonant tank. 25th Annual IEEE Applied Power Electronics Conf. and Exposition, p.1358-1364.
[2]Fang, X., Hu, H.B., Shen, J., et al., 2012. An optimal design of the LLC resonant converter based on peak gain estimation. 27th Annual IEEE Applied Power Electronics Conf. and Exposition, p.1286-1291.
[3]Fang, Y., Xu, D.H., Zhang, Y.J., et al., 2007. Design of high power density LLC resonant converter with extra wide input range. 22nd Annual IEEE Applied Power Electronics Conf., p.976-981.
[4]Hamamura, S., Ninomiya, T., Yamamoto, M., et al., 2003. Combined PWM and PFM control for universal line voltage of a piezoelectric transformer off-line converter. IEEE Trans. Power Electron., 18(1):270-277.
[5]Hu, J., Lin, H.P., Lu, Z.Y., et al., 2015. Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver. Front. Inform. Technol. Electron. Eng., 16(8):679-693.
[6]Jang, J., Joung, M., Choi, B., et al., 2012. Dynamic analysis and control design of optocoupler-isolated LLC series resonant converters with wide input and load variations. IET Power Electron., 5(6):755-764.
[7]Jiang, Z.H., 2006. Power management of hybrid photovoltaic—fuel cell power systems. IEEE Power Engineering Society General Meeting, p.3458-3463.
[8]Jung, J.H., Kwon, J.G., 2007. Theoretical analysis and optimal design of LLC resonant converter. European Conf. on Power Electronics and Applications, p.1134-1143.
[9]Liang, Z.G., Guo, R., Wang, G.Y., et al., 2010. A new wide input range high efficiency photovoltaic inverter. IEEE Energy Conversion Congress and Exposition, p.2937-2943.
[10]Lin, B.R., Nian, Y.B., Shiau, T.Y., 2013. Resonant converter with fixed frequency control. IEEE Region 10 Conf. TENCON, p.1-6.
[11]Rajaei, A., Mohamadian, M., Varjani, A.Y., 2013. Vienna-rectifier-based direct torque control of PMSG for wind energy application. IEEE Trans. Ind. Electron., 60(7): 2919-2929.
[12]Steigerwald, R.L., 1988. A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron., 3(2): 174-182.
[13]Song, S.H., Kang, S.I., Hahm, N.K., 2003. Implementation and control of grid connected AC-DC-AC power converter for variable speed wind energy conversion systems. 18th Annual IEEE Applied Power Electronics Conf. and Exposition, p.154-158.
[14]Tian, J., Su, C., Soltani, M., et al., 2014. Active power dispatch method for a wind farm central controller considering wake effect. 40th Annual Conf. of the IEEE Industrial Electronics Society, IECON, p.5450-5456.
[15]Walker, G.R., Pierce, J.C., 2006. PhotoVoltaic DC-DC module integrated converter for novel cascaded and bypass grid connection topologies—design and optimisation. 37th IEEE Power Electronics Specialists Conf. Records, p.1767-1773.
[16]Walker, G.R., Sernia, P.C., 2004. Cascaded DC-DC converter connection of photovoltaic modules. IEEE Trans. Power Electron., 19(4):1130-1139.
[17]Wang, C.X., Lu, Z.X., Qiao, Y., 2013. A consideration of the wind power benefits in day-ahead scheduling of wind-coal intensive power systems. IEEE Trans. Power Syst., 28(1):236-245.
[18]Yang, B., 2003. Topology Investigation of Front End DC/DC Converter for Distributed Power System. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.
[19]Zhang, Z., Thomsen, O.C., Andersen, M.A.E., 2009. A DC-DC converter with wide input voltage range for fuel cell and supercapacitor application. Int. Conf. on Power Electronics and Drive Systems, p.1324-1329.
Open peer comments: Debate/Discuss/Question/Opinion
<1>