Full Text:   <1094>

Summary:  <218>

CLC number: TP336

On-line Access: 2017-07-31

Received: 2016-02-25

Revision Accepted: 2016-07-10

Crosschecked: 2017-07-14

Cited: 0

Clicked: 2146

Citations:  Bibtex RefMan EndNote GB/T7714


Yong Lei


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.7 P.941-954


Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors

Author(s):  Da-hui Gao, Qing-feng Wang, Yong Lei

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   ylei@zju.edu.cn

Key Words:  Fault tolerant, Delay compensation, Controller area network, Communication errors, Electric swing system of hybrid excavator

Da-hui Gao, Qing-feng Wang, Yong Lei. Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(7): 941-954.

@article{title="Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors",
author="Da-hui Gao, Qing-feng Wang, Yong Lei",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors
%A Da-hui Gao
%A Qing-feng Wang
%A Yong Lei
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 7
%P 941-954
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601021

T1 - Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors
A1 - Da-hui Gao
A1 - Qing-feng Wang
A1 - Yong Lei
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 7
SP - 941
EP - 954
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601021

A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensation of the delays and packet dropouts. The adverse impacts of communication errors are effectively reduced by a novel delay compensation scheme, where the feedback signal and the control command are compensated in each control period in the central controller and the swing motor driver, respectively, without requiring additional network bandwidth. The recursive least-squares algorithm with forgetting factor algorithm is employed to identify the time-varying model parameters due to pose variation, and a reverse correction law is embedded into the feedback compensation in consecutive packet dropout scenarios to overcome the impacts of the model error. Simulations and practical experiments are conducted. The results show that the proposed fault-tolerant strategy can effectively reduce the communication-error-induced overshoot and response time variation.


概要:基于自适应的延时与丢帧补偿,提出了一种分布式容错策略,用以确保基于CAN(controller area network)总线的混合动力挖掘机电动回转系统在通信出错时获得良好的运行性能。通过采用一种分别在中央控制器和电机驱动器上对反馈信号和控制信号进行补偿的全新延时补偿方法,可以在不增加通信带宽的情况下大大降低通信错误的不利影响。采用了带遗忘因子的递推最小二乘法对由姿态变化引起的时变模型参数进行辨识,并通过在连续丢帧情况下的反馈补偿中引入反向修正率来消除模型误差的不利影响。仿真和实验结果表明提出的容错策略可以有效第减小通信错误引起的系统超调和响应时间变化。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Beza, M., Bongiorno, M., 2014. Application of recursive least squares algorithm with variable forgetting factor for frequency component estimation in a generic input signal. IEEE Trans. Ind. Appl., 50(2):1168-1176.

[2]Du, Z., Yue, D., Hu, S., 2014. H-infinity stabilization for singular networked cascade control systems with state delay and disturbance. IEEE Trans. Ind. Inform., 10(2):882-894.

[3]Gao, D., Wang, Q., 2014. Health monitoring of controller area network in hybrid excavator based on the message response time. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1634-1639.

[4]Gao, D., Wang, Q., Lei, Y., et al., 2015. Online real-time estimation of response time for periodic messages in controller area networks. Math. Prob. Eng., 2015:1-13.

[5]Gupta, R.A., Chow, M.Y., 2010. Networked control system: overview and research trends. IEEE Trans. Ind. Electron., 57(7):2527-2535.

[6]ISO, 2015. Road Vehicles—Controller Area Network (CAN)—Part 1: Data Link Layer and Physical Signalling, ISO 11898-1:2015. International Organization for Stan-dardization, Geneva.

[7]Jin, K., Park, T., Lee, H., 2012. A control method to suppress the swing vibration of a hybrid excavator using sliding mode approach. Proc. Inst. Mech. Eng. C, 226(5): 1237-1253.

[8]Kagoshima, M., Komiyama, M., Nanjo, T., et al., 2007. Development of new hybrid excavator. Kobelco Technol. Rev., 27:39-42.

[9]Katrasnik, T., 2007. Hybridization of powertrain and downsizing of IC ICE—a way to reduce fuel consumption and pollutant emissions—Part 1. Energy Conv. Manag., 48(5):1411-1423.

[10]Kim, H., Choi, J., Yi, K., 2012. Development of supervisory control strategy for optimized fuel consumption of the compound hybrid excavator. Proc. Inst. Mech. Eng. D, 226(12):1652-1666.

[11]Kim, J.Y., 2014. Anti-Rebounding Control Apparatus and Method in an Electrical Swing System of a Hybrid Excavator. E.P. Patent 2 690 224 A1.

[12]Kruszewski, A., Jiang, W.J., Fridman, E., et al., 2012. A switched system approach to exponential stabilization through communication network. IEEE Trans. Contr. Syst. Technol., 20(4):887-900.

[13]Kwon, T., Lee, S., Sul, S., et al., 2010. Power control algorithm for hybrid excavator with super capacitor. IEEE Trans. Ind. Appl., 46(4):1447-1455.

[14]Lei, Y., Yuan, Y., Zhao, J., 2014. Model-based detection and monitoring of the intermittent connections for CAN networks. IEEE Trans. Ind. Electron., 61(6):2912-2921.

[15]Lin, T., Wang, Q., Hu, B., et al., 2010a. Development of hybrid powered hydraulic construction machinery. Autom. Constr., 19(1):11-19.

[16]Lin, T., Wang, Q., Hu, B., et al., 2010b. Research on the energy regeneration systems for hybrid hydraulic excavators. Autom. Constr., 19(8):1016-1026.

[17]Liu, G.P., Xia, Y., Chen, J., et al., 2007. Networked predictive control of systems with random network delays in both forward and feedback channels. IEEE Trans. Ind. Electron., 54(3):1282-1297.

[18]Luck, R., Ray, A., 1990. An observer-based compensator for distributed delays. Automatica, 26(5):903-908.

[19]Luck, R., Ray, A., 1994. Experimental verification of a delay compensation algorithm for integrated communication and control systems. Int. J. Contr., 59(6):1357-1372.

[20]Nilsson, J., 1998. Real-Time Control Systems with Delays. PhD Thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden.

[21]Rahmani, B., Markazi, A.H.D., 2013. Variable selective control method for networked control systems. IEEE Trans. Contr. Syst. Technol., 21(3):975-982.

[22]Shi, Y., Yu, B., 2011. Robust mixed H2/H control of networked control systems with random time delays in both forward and backward communication links. Automatica, 47(4):754-760.

[23]Shi, Y., Huang, J., Yu, B., 2013. Robust tracking control of networked control systems application to a networked DC motor. IEEE Trans. Ind. Electron., 60(12):5864-5874.

[24]Shuai, Z., Zhang, H., Wang, J., et al., 2014. Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over CAN network with time-varying delays. IEEE Trans. Veh. Technol., 63(2):591-602.

[25]Song, H., Liu, G.P., Yu, L., 2013. Networked predictive control of uncertain systems with multiple feedback channels. IEEE Trans. Ind. Electron., 60(11):5228-5238.

[26]Tian, Y.C., Levy, D., 2008. Compensation for control packet dropout in networked control systems. Inf. Sci., 178(5):1263-1278.

[27]Tipsuwan, Y., Chow, M.Y., 2004. Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation—part I: networked control. IEEE Trans. Ind. Electron., 51(6):1218-1227.

[28]Wang, D., Guan, C., Pan, S., et al., 2009. Performance analysis of hydraulic excavator powertrain hybridization. Autom. Constr., 18(3):249-257.

[29]Wang, Q., Zhang, Y., Xiao, Q., 2005. Evaluation for energy saving effect and simulation research on energy saving of hydraulic system in hybrid construction machinery. Chin. J. Mech. Eng., 41(12):35-140.

[30]Wang, T., Wang, Q., 2014. An energy-saving pressure-compensated hydraulic system with electrical approach. IEEE/ASME Trans. Mechatron., 19(2):570-578.

[31]Wang, Y., Sun, X., Wang, Z., et al., 2014. Construction of Lyapunov–Krasovskii functionals for switched nonlinear systems with input delay. Automatica, 50(4):1249-1253.

[32]Xiao, Q., Wang, Q., Zhang, Y., 2008. Control strategies of power system in hybrid hydraulic excavator. Autom. Constr., 17(4):361-367.

[33]Yang, R., Liu, G.P., Shi, P., et al., 2014. Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron., 61(1):512-520.

[34]Yao, H., Wang, Q., 2015. The control strategy of improving the stability of powertrain for compound hybrid power excavator. Proc. Inst. Mech. Eng. D J. Autom. Eng., 229(5):1-15.

[35]Zhang, L., Gao, H., Kaynak, O., 2013. Network-induced constraints in networked control systems—a survey. IEEE Trans. Ind. Inf., 9(1):403-416.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE