Full Text:   <522>

Summary:  <155>

CLC number: TP273

On-line Access: 2019-01-30

Received: 2018-09-15

Revision Accepted: 2018-11-26

Crosschecked: 2019-01-08

Cited: 0

Clicked: 845

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

You-min Zhang

http://orcid.org/0000-0002-9731-5943

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.1 P.95-106

http://doi.org/10.1631/FITEE.1800570


Active fault-tolerant tracking control of a quadrotor with model uncertainties and actuator faults


Author(s):  Yu-jiang Zhong, Zhi-xiang Liu, You-min Zhang, Wei Zhang, Jun-yi Zuo

Affiliation(s):  School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; more

Corresponding email(s):   yujiangzhong@hotmail.com

Key Words:  Model reference adaptive control, Neural network, Quadrotor, Fault-tolerant control, Fault detection and diagnosis


Yu-jiang Zhong, Zhi-xiang Liu, You-min Zhang, Wei Zhang, Jun-yi Zuo. Active fault-tolerant tracking control of a quadrotor with model uncertainties and actuator faults[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(1): 95-106.

@article{title="Active fault-tolerant tracking control of a quadrotor with model uncertainties and actuator faults",
author="Yu-jiang Zhong, Zhi-xiang Liu, You-min Zhang, Wei Zhang, Jun-yi Zuo",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="1",
pages="95-106",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800570"
}

%0 Journal Article
%T Active fault-tolerant tracking control of a quadrotor with model uncertainties and actuator faults
%A Yu-jiang Zhong
%A Zhi-xiang Liu
%A You-min Zhang
%A Wei Zhang
%A Jun-yi Zuo
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 1
%P 95-106
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800570

TY - JOUR
T1 - Active fault-tolerant tracking control of a quadrotor with model uncertainties and actuator faults
A1 - Yu-jiang Zhong
A1 - Zhi-xiang Liu
A1 - You-min Zhang
A1 - Wei Zhang
A1 - Jun-yi Zuo
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 1
SP - 95
EP - 106
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800570


Abstract: 
This paper presents a reliable active fault-tolerant tracking control system (AFTTCS) for actuator faults in a quadrotor unmanned aerial vehicle (QUAV). The proposed AFTTCS is designed based on a well-known model reference adaptive control (MRAC) framework that guarantees the global asymptotic stability of a QUAV system. To mitigate the negative impacts of model uncertainties and enhance system robustness, a radial basis function neural network is incorporated into the MRAC scheme for adaptively identifying the model uncertainties online and modifying the reference model. Meanwhile, actuator dynamics are considered to avoid undesirable performance degradation. Furthermore, a fault detection and diagnosis estimator is constructed to diagnose loss-of-control-effectiveness faults in actuators. Based on the fault information, a fault compensation term is added to the control law to compensate for the adverse effects of actuator faults. Simulation results show that the proposed AFTTCS enables the QUAV to track the desired reference commands in the absence/presence of actuator faults with satisfactory performance.

模型不确定性和执行器故障下的四旋翼飞行器主动容错控制方法

摘要:针对四旋翼飞行器的执行器故障,提出一种可靠的主动容错控制方法。该方法以模型参考自适应控制理论为框架,保证四旋翼飞行器系统的全局渐进稳定性。为消除模型不确定性影响,增强系统鲁棒性,径向基神经网络算法被集成到所设计的控制系统中,自适应地辨识模型不确定性,在线调整参考模型。此外,为避免因执行器饱和及响应速率限制造成的不必要的系统性能下降,在控制器设计过程中,同时考虑执行器动态特性。基于自适应两级卡尔曼滤波器设计的故障检测与诊断模块,可以准确估计执行器控制效率损失故障。利用获取的故障信息,重新构造控制器的控制律,弥补执行器故障的不利影响。仿真结果表明,在执行器有、无故障两种情况下,提出的主动容错控制方法都能使四旋翼飞行器准确跟踪期望的参考信号。

关键词:模型参考自适应控制;神经网络;四旋翼飞行器;容错控制;故障检测与诊断

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Avram RC, Zhang XD, Muse J, 2018. Nonlinear adaptive fault-tolerant quadrotor altitude and attitude tracking with multiple actuator faults. Trans Contr Syst Technol, 26(2):701-707.

[2]Chen FY, Zhang KK, Wang Z, et al., 2015. Trajectory tracking of a quadrotor with unknown parameters and its fault-tolerant control via sliding mode fault observer. Proc Inst Mech Eng Part I J Syst Contr Eng, 229(4):279-292.

[3]Chen FY, Jiang RQ, Zhang KK, et al., 2016. Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans Ind Electron, 63(8):5044-5056.

[4]Cheng E, 2015. Aerial photography and videography using drones. In: Johnson K (Ed.), Aerial Photograph Techniques. Peachpit Press, San Francisco.

[5]Dydek ZT, Annaswamy AM, Lavretsky E, 2013. Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans Contr Syst Technol, 21(4):1400-1406.

[6]Hao W, Xian B, 2017. Nonlinear adaptive fault-tolerant control for a quadrotor UAV based on immersion and invariance methodology. Nonl Dynam, 90(4):2813-2826.

[7]Ioannou PA, Sun J, 1996. Robust Adaptive Control. Prentice-Hall, Upper Saddle River, NJ, USA.

[8]Joshi SM, Patre P, Tao G, 2012. Adaptive control of systems with actuator failures using an adaptive reference model. J Guid Contr Dynam, 35(3):938-949.

[9]Kayacan E, Maslim R, 2017. Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions. IEEE/ASME Trans Mech, 22(1):339-348.

[10]Liu ZX, Yuan C, Zhang YM, et al., 2016. A learning-based fault tolerant tracking control of an unmanned quadrotor helicopter. J Intell Rob Syst, 84(1-4):145-162.

[11]Liu ZX, Yuan C, Yu X, et al., 2017. Retrofit fault-tolerant tracking control design of an unmanned quadrotor helicopter considering actuator dynamics. Int J Robust Nonl Contr, in press.

[12]Mallavalli S, Fekih A, 2018. A fault tolerant tracking control for a quadrotor UAV subject to simultaneous actuator faults and exogenous disturbances. Int J Contr, in press.

[13]Murray CC, Chu AG, 2015. The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transp Res Part C Emerg Technol, 54:86-109.

[14]Park J, Sandberg IW, 1991. Universal approximation using radial-basis-function networks. Neur Comput, 3(2):246-257.

[15]Ríos H, Falc‘on R, González OA, et al., 2018. Continuous sliding-modes control strategies for quad-rotor robust tracking: real-time application. IEEE Trans Ind Electron, 66(2):1264-1272.

[16]Tao G, Chen SH, Tang XD, et al., 2004. State feedback designs for state tracking. In: Tao G, Chen SH, Tang XD, et al. (Eds.), Adaptive Control of Systems with Actuator Failures. Springer, London, p.15-54.

[17]Wang B, Ghamry KA, Zhang YM, 2016. Trajectory tracking and attitude control of an unmanned quadrotor helicopter considering actuator dynamics. 35thChinese Control Conf, p.10795-10800.

[18]Wu EN, Zhang YM, Zhou KM, 2000. Detection, estimation, and accommodation of loss of control effectiveness. Int J Adapt Contr Signal Process, 14(7):775-795.

[19]Xiong JJ, Zhang GB, 2017. Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans, 66:233-240.

[20]Xu R, Ozguner U, 2006. Sliding mode control of a quadrotor helicopter. 45th IEEE Conf on Decision and Control, p.4957-4962.

[21]Xu ZW, Nian XH, Wang HB, et al., 2017. Robust guaranteed cost tracking control of quadrotor UAV with uncertainties. ISA Trans, 69:157-165.

[22]Yacef F, Bouhali O, Hamerlain M, et al., 2016. Observer-based adaptive fuzzy backstepping tracking control of quadrotor unmanned aerial vehicle powered by Li-ion batter. J Intell Robot Syst, 84(1-4):179-197.

[23]Yuan C, Liu ZX, Zhang YM, 2015. UAV-based forest fire detection and tracking using image processing technique. Int Conf on Unmanned Aircraft Systems p.639-643.

[24]Zhang CH, Kovacs JM, 2012. The application of small unmanned aerial systems for precision agriculture: a review. Prec Agric, 13(6):693-712.

[25]Zhang YM, Jiang J, 2002. Active fault-tolerant control system against partial actuator failures. IEE Proc Contr Theory Appl, 149(1):95-104.

[26]Zhang YM, Jiang J, 2008. Bibliographical review on reconfigurable fault-tolerant control systems. Ann Rev Contr, 32(2):229-252.

[27]Zhong YJ, Zhang W, Zhang YM, 2018a. Active fault-tolerant tracking control of a quadrotor UAV. Int Conf on Sensing, Diagnostics, Prognostics, and Control.

[28]Zhong YJ, Zhang YM, Zhang W, et al., 2018b. Robust actuator fault detection and diagnosis for a quadrotor UAV with external disturbances. IEEE Access, 6:48169-48180.

[29]Zou Y, Zhu B, 2017. Adaptive trajectory tracking controller for quadrotor systems subject to parametric uncertainties. J Frankl Inst, 354(15):6724-6746.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE