Full Text:   <1051>

Summary:  <236>

CLC number: TM351

On-line Access: 2017-12-04

Received: 2016-05-06

Revision Accepted: 2016-08-07

Crosschecked: 2017-10-29

Cited: 0

Clicked: 2122

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jawad Aslam

http://orcid.org/0000-0002-8151-5457

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.10 P.1635-1643

http://doi.org/10.1631/FITEE.1601215


Design of a hybrid magneto motive force electromechanical valve actuator


Author(s):  Jawad Aslam, Xing-hu Li, Faira Kanwal Janjua

Affiliation(s):  School of Transportation Science and Engineering, Beihang University, Beijing 100191, China; more

Corresponding email(s):   jawad_mtsa@yahoo.com

Key Words:  Permanent magnet, Electromagnet, Variable valve timing, Camless engine, Magnetomotive force


Jawad Aslam, Xing-hu Li, Faira Kanwal Janjua. Design of a hybrid magneto motive force electromechanical valve actuator[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(10): 1635-1643.

@article{title="Design of a hybrid magneto motive force electromechanical valve actuator",
author="Jawad Aslam, Xing-hu Li, Faira Kanwal Janjua",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="10",
pages="1635-1643",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601215"
}

%0 Journal Article
%T Design of a hybrid magneto motive force electromechanical valve actuator
%A Jawad Aslam
%A Xing-hu Li
%A Faira Kanwal Janjua
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 10
%P 1635-1643
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601215

TY - JOUR
T1 - Design of a hybrid magneto motive force electromechanical valve actuator
A1 - Jawad Aslam
A1 - Xing-hu Li
A1 - Faira Kanwal Janjua
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 10
SP - 1635
EP - 1643
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601215


Abstract: 
We propose a novel axis-symmetric modified hybrid permanent magnet (PM)/electromagnet (EM) magnetomotive force actuator for a variable valve timing camless engine. The design provides a large magnetic force with low energy consumption, low coil inductance, PM demagnetization isolation, and improved transient response. Simulation and experimental results confirm forces of about 200 N (in the presence of coil current) at the equilibrium position and 500 N (in the absence of coil current) at the armature seat. We compared our proposed design with a double solenoid valve actuator (DSVA). The finite element method (FEM) designs of the DSVA and our proposed valve actuator were validated by experiments performed on manufactured prototypes.

一种混合电磁气门驱动机构设计

概要:提出一种应用于可变气门正时技术无凸轮轴发动机的新型电磁驱动机构。该机构具有轴对称结构,且采用永磁(permanent magnet, PM)和电磁(electro magnet, EM)两种力混合驱动;可提供较大磁动势但保持较低能耗,且改善了瞬态响应,具有较低线圈电感、永磁退磁隔离等优点。仿真和试验结果证实,该机构在平衡位置处可产生约200N作用力(线圈通电),在电枢底座可以产生500 N作用力(线圈不通电)。对该机构同双电磁阀驱动机构(double solenoid valve actuator, DSVA)进行了比较分析。所提机构和DSVA有限元设计方法经过自主制作的试验样机验证。

关键词:永磁;电磁;可变气门正时;无凸轮轴发动机;磁动势

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Albert, J., Banucu, R., Hafla, W., et al., 2009. Simulation based development of a valve actuator for alternative drives using BEM-FEM code. IEEE Trans. Magn., 45(3): 1744-1747.

[2]Chladny, R.R., Koch, C.R., Lynch, A.F., 2005. Modeling automotive gas-exchange solenoid valve actuators. IEEE Trans. Magn., 41(3):1155-1162.

[3]Clark, R.E., Jewell, G.W., Forrest, S.J., et al., 2005. Design features for enhancing the performance of electromagnetic valve actuation systems. IEEE Trans. Magn., 41(3): 1163-1168. http://doi.org/10.1109/TMAG.2004.843342

[4]Cope, D., Wright, A., 2006. Electromagnetic Fully Flexible Valve Actuator. SAE Technical Paper No. 2006-01-0044.

[5]Fabbrini, A., Garolli, A., Mercorelli, P., 2012. A trajectory generation algorithm for optimal consumption in electromagnetic actuators. IEEE Trans. Contr. Syst. Techn., 20(4):1025-1032.

[6]Gillela, P.K., Song, X., Cun, Z., 2014. Time varying internal model based control of a camless engine valve actuation system. IEEE Trans. Contr. Syst. Techn., 22(4):1498-1510.

[7]Hara, S., Suga, S., Wanatabe, S., et al., 2009. Variable valve actuation systems for environmental friendly engines. Hitachi Rev., 58(7):319-324.

[8]Kim, J., Chang, J., 2006. A new electromagnetic linear actuator for quick latching. 12th Biennial IEEE Conf. on Electromagnetic Field Computation, p.70.

[9]Kim, J., Lieu, D.K., 2005. Designs for a new, quick-response, latching electromagnetic valve. IEEE Int. Conf. on Electric Machines and Drives, p.1773-1779.

[10]Kim, J., Lieu, D.K., 2007. A new electromagentic valve actuator with less energy consumption for variable valve timing. J. Mech. Sci. Eng., 21(4):602-606.

[11]Kim, J., Chang, J.H., Park, S.M., et al., 2010. A novel electromagnetic latching device for variable valve timing in automotive engine. 14th Biennial IEEE Conf. on Electromagnetics Field Computation, p.1.

[12]Liu, J.J., Lu, P.H., Yang, Y.P., et al., 2011. Energy compensation for soft landing control in camless engine with electromagnetic valve actuator. Int. Conf. on Electrical Machines and Systems, p.1-6.

[13]Liu, L., Chang, S., 2011a. Improvement of valve seating performance of engine’s electromagnetic valve train. Mechatronics, 21(7):1234-1238.

[14]Liu, L., Chang, S., 2011b. Motion control of an electromagnetic valve actuator based on inverse system method. Proc. IMECHE Part D: J. Autom. Eng., 226(1):85-93.

[15]Mercorelli, P., 2012a. A hysteresis hybrid extended Kalman filter as an observer for sensorless valve control in camless internal combustion engines. IEEE Trans. Ind. Appl., 48(6):1940-1949.

[16]Mercorelli, P., 2012b. A two stage augmented extended Kalman filter as an observer for sensorless control in camless external combustion engines. IEEE Trans. Ind. Electron., 59(11):4236-4247.

[17]Mercorelli, P., 2015. A two stage sliding mode high gain observer to reduce uncertainties and disturbances effects for sensorless control in automotive applications. IEEE Trans. Ind. Electron., 62(9):5929-5940.

[18]Mercorelli, P., Werner, N., Becker, U., et al., 2012. A hybrid hydraulic piezo actuator and its control for camless internal combustion engines. 7th Int. Conf. on Integerated Power Electronics Systems, p.1-6.

[19]Rens, J., Richard, E.C., Geraint, W.J., 2006. Static performance of a polarized permanent-magnet reluctance actuator for internal combustion engine valve actuation. IEEE Trans. Magn., 42(8):2063-2070.

[20]Sellnau, M., Rask, E., 2003. Two-Step Variable Valve Actuation for Fuel Economy, Emissions, and Performance. SAE Technical Paper No. 2003-01-0029.

[21]Shiao, Y., Dat, L.V., 2013. A new electromagnetic valve train with PM/EM actuator in SI engines. Trans. Can. Soc. Mech. Eng., 37(3):787-796.

[22]Vu, D.T., Pyung, H., 2013. A novel of hybrid magnet engine valve actuator using shorted turn for fast initial response. Int. J. Inform. Electron. Eng., 3(3):250-253.

[23]Yang, Y.P., Liu, J.J., Lu, P.H., et al., 2011. Multifunctional optimal design of an electromagnetic valve actuator with hybrid magnetomotive force for a camless engine. Int. Conf. on Electrical Machines and Systems, p.1-6.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE