Full Text:   <2295>

Summary:  <1483>

CLC number: TN95

On-line Access: 2018-06-07

Received: 2016-09-13

Revision Accepted: 2017-01-23

Crosschecked: 2018-04-12

Cited: 0

Clicked: 6582

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jun Wang

http://orcid.org/0000-0003-1717-6750

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.4 P.557-568

http://doi.org/10.1631/FITEE.1601423


Joint compressed sensing imaging and phase adjustment via an iterative method for multistatic passive radar


Author(s):  Jue Wang, Jun Wang

Affiliation(s):  National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

Corresponding email(s):   xdwangjue@163.com

Key Words:  Multistatic passive radar, Compressed sensing, Phase adjustment, Fixed-point iteration technique


Jue Wang, Jun Wang. Joint compressed sensing imaging and phase adjustment via an iterative method for multistatic passive radar[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(4): 557-568.

@article{title="Joint compressed sensing imaging and phase adjustment via an iterative method for multistatic passive radar",
author="Jue Wang, Jun Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="4",
pages="557-568",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601423"
}

%0 Journal Article
%T Joint compressed sensing imaging and phase adjustment via an iterative method for multistatic passive radar
%A Jue Wang
%A Jun Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 4
%P 557-568
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601423

TY - JOUR
T1 - Joint compressed sensing imaging and phase adjustment via an iterative method for multistatic passive radar
A1 - Jue Wang
A1 - Jun Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 4
SP - 557
EP - 568
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601423


Abstract: 
The resolution of the multistatic passive radar imaging system (MPRIS) is poor due to the narrow bandwidth of the signal transmitted by illuminators of opportunity. Moreover, the inaccuracies caused by the inaccurate tracking system or the error position measurement of illuminators or receivers can deteriorate the quality of an image. To improve the performance of an MPRIS, an imaging method based on the tomographic imaging principle is presented. Then the compressed sensing technique is extended to the MPRIS to realize high-resolution imaging. Furthermore, a phase correction technique is developed for compensating for phase errors in an MPRIS. Phase errors can be estimated by iteratively solving an equation that is derived by minimizing the mean recovery error of the reconstructed image based on the principle of fixed-point iteration technique. The technique is nonparametric and can be used to estimate phase errors of any form. The effectiveness and convergence of the technique are confirmed by numerical simulations.

基于迭代方法的联合压缩感知与相位修正多站外辐射源雷达成像算法研究

摘要:受限于机会照射源信号通常为窄带信号,多站外辐射源雷达成像系统分辨率通常较低。另外,由于跟踪系统精度影响及站址测量过程中存在测量误差,系统成像质量会严重下降。为提高多站外辐射源雷达成像系统成像性能,开展了基于层析成像原理的高分辨外辐射源雷达成像算法研究。进一步,将压缩感知技术应用于外辐射源雷达成像系统中,以改善系统成像分辨力。最后,针对非合作平台测量误差引入的相位误差,提出相应的外辐射源雷达成像系统相位补偿方法。通过最小化图像的重构误差建立了相位误差求解模型,基于定点迭代技术对相位误差模型求解。所提相位误差补偿技术是一种非参数化方法,可用于补偿任意形式相位误差。理论分析与仿真实验验证了所提方法的有效性和收敛性。

关键词:多站外辐射源雷达;压缩感知;相位修正;定点迭代技术

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Berizzi F, Corsini G, 1996. Autofocusing of inverse synthetic aperture radar images using contrast optimization. IEEE Trans Aerosp Electron Syst, 32(3):1185-1191.

[2]Berizzi F, Martorella M, Haywood B, et al., 2004. A survey on ISAR autofocusing techniques. Proc Int Conf on Image Processing, p.9-12.

[3]Brisken S, Martella M, 2014. Multistatic ISAR autofocus with an image entropy-based technique. IEEE Aerosp Electron Syst Mag, 29(7):30-36.

[4]Brisken S, Martorella M, Mathy T, et al., 2012. Multistatic ISAR autofocussing using image contrast optimization. IET Int Conf on Radar Systems, p.1-4.

[5]Brisken S, Martorella M, Mathy T, et al., 2014. Motion estimation and imaging with a multistatic ISAR system. IEEE Trans Aerosp Electron Syst, 50(3):1701-1714.

[6]Candès EJ, Tao T, 2006. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inform Theory, 52(12):5406-5425.

[7]Donoho DL, 2006. Compressed sensing. IEEE Trans Inform Theory, 52(4):1289-1306.

[8]Giusti E, Tomei S, Bacci A, et al., 2013. Autofocus for CS based ISAR imaging in the presence of gapped data. Proc 2nd Int Workshop on Compressed Sensing Applied to Radar, p.1-4.

[9]Gonzalez-Valdes B, Allan G, Rodriguez-Vaqueiro Y, et al., 2014. Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging. IEEE Trans Antennas Propag, 62(4): 1716-1722.

[10]Grant M, 2010. CVX: Matlab Software for Disciplined Convex Programming, Version 1.21. http://cvxr.com/cvx

[11]Kirsch A, 2011. An Introduction to the Mathematical Theory of Inverse Problems. Springer Science & Business Media, New York, NY.

[12]Liu J, Li HB, Himed B, 2014. Two target detection algorithms for passive multistatic radar. IEEE Trans Signal Process, 62(22):5930-5939.

[13]Lv XY, Wang J, Wang J, 2015. Robust direction of arrival estimate method in FM-based passive bistatic radar with a four-element Adcock antenna array. IET Radar Sonar Navig, 9(4):392-400.

[14]Mensa D, Heidbreder G, Wade G, 1980. Aperture synthesis by object rotation in coherent imaging. IEEE Trans Nucl Sci, 27(2):989-998.

[15]Önhon NÖ, Çetin M, 2012. A sparsity-driven approach for joint SAR imaging and phase error correction. IEEE Trans Image Process, 21(4):2075-2088.

[16]Stojanovic I, Çetin M, Karl WC, 2013. Compressed sensing of monostatic and multistatic SAR. IEEE Geosci Remote Sens Lett, 10(6):1444-1448.

[17]Wang J, Liu X, Zhou Z, 2004. Minimum-entropy phase adjustment for ISAR. IEE Proc Radar Sonar Navig, 151(4):203-209.

[18]Wang J, Zhang XW, Bao Z, 2006. Passive radar imaging algorithm based on sub-apertures synthesis of multiple television stations. Proc Int Conf on Radar, p.1-4.

[19]Wu QS, Zhang YD, Amin MG, et al., 2015. High-resolution passive SAR imaging exploiting structured Bayesian compressive sensing. IEEE J Sel Top Signal Process, 9(8):1484-1497.

[20]Yarman CE, Wang L, Yazici B, 2010. Passive synthetic aperture radar imaging with single frequency sources of opportunity. Proc IEEE Radar Conf, p.949-954.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE