Full Text:   <6703>

Summary:  <1693>

CLC number: TN958.97

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-04-10

Cited: 0

Clicked: 7019

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Gang Chen

https://orcid.org/0000-0002-1744-9408

Jun Wang

https://orcid.org/0000-0002-3434-6312

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.7 P.1074-1084

http://doi.org/10.1631/FITEE.1900150


Robust mismatched filtering algorithm for passive bistatic radar using worst-case performance optimization


Author(s):  Gang Chen, Jun Wang

Affiliation(s):  National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

Corresponding email(s):   chengang_xidian@163.com, wangjun@xidian.edu.cn

Key Words:  Passive bistatic radar, Range sidelobes, Low signal-to-noise ratio, Mismatched filtering, Worst-case performance optimization


Gang Chen, Jun Wang. Robust mismatched filtering algorithm for passive bistatic radar using worst-case performance optimization[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(7): 1074-1084.

@article{title="Robust mismatched filtering algorithm for passive bistatic radar using worst-case performance optimization",
author="Gang Chen, Jun Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="7",
pages="1074-1084",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900150"
}

%0 Journal Article
%T Robust mismatched filtering algorithm for passive bistatic radar using worst-case performance optimization
%A Gang Chen
%A Jun Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 7
%P 1074-1084
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900150

TY - JOUR
T1 - Robust mismatched filtering algorithm for passive bistatic radar using worst-case performance optimization
A1 - Gang Chen
A1 - Jun Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 7
SP - 1074
EP - 1084
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900150


Abstract: 
passive bistatic radar detects targets by exploiting available local broadcasters and communication transmissions as illuminators, which are not designed for radar. The signal usually contains a time-varying structure, which may result in high-level range ambiguity sidelobes. Because the mismatched filter is effective in suppressing sidelobes, it can be used in a passive bistatic radar. However, due to the low signal-to-noise ratio in the reference signal, the sidelobe suppression performance seriously degrades in a passive bistatic radar system. To solve this problem, a novel mismatched filtering algorithm is developed using worst-case performance optimization. In this algorithm, the influence of the low energy level in the reference signal is taken into consideration, and a new cost function is built based on worst-case performance optimization. With this optimization, the mismatched filter weights can be obtained by minimizing the total energy of the ambiguity range sidelobes. Quantitative evaluations and simulation results demonstrate that the proposed algorithm can realize sidelobe suppression when there is a low-energy reference signal. Its effectiveness is proved using real data.

外辐射源雷达中基于最差性能最优的稳健失配滤波算法

陈刚,王俊
西安电子科技大学雷达信号处理国家重点实验室,中国西安市,710071

摘要:外辐射源雷达利用可获得的民用及商用照射源探测目标。这些照射源信号并非为雷达设计,信号结构中存在的时变特性使其模糊函数存在严重的距离模糊副峰。失配滤波技术能有效抑制副峰,可应用于外辐射源雷达。然而,当参考信号信噪比较低时,外辐射源雷达系统的副峰抑制性能急剧下降。为解决该问题,提出一种基于最差性能最优的失配滤波算法。该算法考虑参考信号信噪比的影响,据此构建新的优化问题模型。通过求解该优化问题,可得低参考信号信噪比情况下的最优失配解。理论推导和仿真分析说明所提算法可在较低参考信号信噪比情况下实现副峰抑制。实测数据进一步验证了该方法的有效性。

关键词:外辐射源雷达;距离副峰;低信噪比;失配滤波;最差性能最优

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdullah RSAR, Salah AA, Ismail A, et al., 2016. Experimental investigation on target detection and tracking in passive radar using long-term evolution signal. IET Radar Sonar Navig, 10(3):577-585.

[2]Bok D, 2018. Reconstruction and reciprocal filter of OFDM waveforms for DVB-T2 based passive radar. Int Conf on Radar, p.1-6.

[3]Bournaka G, Ummenhofer M, Cristallini D, et al., 2017. Experimental study for transmitter imperfections in DVB-T based passive radar. IEEE Trans Aerosp Electron Syst, 54(3):1341-1354.

[4]Chen G, Wang J, Guo S, et al., 2018. Improved mismatched filtering for ATV-based passive bistatic radar. IET Radar Sonar Navig, 12(6):663-670.

[5]Clemente C, Soraghan JJ, 2014. GNSS-based passive bistatic radar for micro-Doppler analysis of helicopter rotor blades. IEEE Trans Aerosp Electron Syst, 50(1):491-500.

[6]Colone F, Cardinali R, Lombardo P, et al., 2009. Space-time constant modulus algorithm for multipath removal on the reference signal exploited by passive bistatic radar. IET Radar Sonar Navig, 3(3):253-264.

[7]Colone F, Bongioanni C, Lombardo P, 2013. Multifrequency integration in FM radio-based passive bistatic radar. Part I: target detection. IEEE Aerosp Electron Syst Mag, 28(4): 28-39.

[8]Garry JL, Baker CJ, Smith GE, 2017. Evaluation of direct signal suppression for passive radar. IEEE Trans Geosci Remote Sens, 55(7):3786-3799.

[9]Lorenz RG, Boyd SP, 2005. Robust minimum variance beamforming. IEEE Trans Signal Process, 53(5):1684- 1696.

[10]Lu Y, Tan D, Sun H, 2007. Air target detection and tracking using a multi-channel GSM based passive radar. Int Waveform Diversity and Design Conf, p.122-126.

[11]Lv XY, Wang J, Wang J, 2015. Robust direction of arrival estimate method in FM-based passive bistatic radar with a four-element Adcock antenna array. IET Radar Sonar Navig, 9(4):392-400.

[12]Ma H, Antoniou M, Stove AG, et al., 2018. Maritime moving target localization using passive GNSS-based multi-static radar. IEEE Trans Geosci Remote Sens, 56(8):4808-4819.

[13]Martelli T, Cardinali R, Colone F, 2018. Detection performance assessment of the FM-based AULOS® passive radar for air surveillance applications. 19th Int Radar Symp, p.1-10.

[14]Milani I, Colone F, Bongioanni C, et al., 2018. WiFi emission- based vs passive radar localization of human targets. IEEE Radar Conf, p.1311-1316.

[15]Salah AA, Abdullah RSAR, Ismail A, et al., 2013. Feasibility study of LTE signal as a new illuminators of opportunity for passive radar applications. IEEE Int RF and Microwave Conf, p.257-262.

[16]Tabassum MN, Hadi MA, Alshebeili S, 2016. CS based processing for high resolution GSM passive bistatic radar. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.2229-2233.

[17]Vorobyov SA, Gershman AB, Luo ZQ, 2003. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans Signal Process, 51(2):313-324.

[18]Wang HT, Wang J, Zhong LP, 2011. Mismatched filter for analogue TV-based passive bistatic radar. IET Radar Sonar Navig, 5(5):573-581.

[19]Yi JX, Wan XR, Li DS, et al., 2018. Robust clutter rejection in passive radar via generalized subband cancellation. IEEE Trans Aerosp Electron Syst, 54(4):1931-1946.

[20]Zaimbashi A, 2017. Target detection in analog terrestrial TV-based passive radar sensor: joint delay-Doppler estimation. IEEE Sens J, 17(17):5569-5580.

[21]Zrnic B, Zejak A, Petrovic A, et al., 1998. Range sidelobe suppression for pulse compression radars utilizing modified RLS algorithm. IEEE 5th Int Symp on Spread Spectrum Techniques and Applications, p.1008-1011.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE