Full Text:   <3411>

Summary:  <2239>

CLC number: TN958.97

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-10-20

Cited: 1

Clicked: 9110

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.11 P.1071-1085

http://doi.org/10.1631/jzus.C1400074


An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar


Author(s):  Xin Guan, Li-hua Zhong, Dong-hui Hu, Chi-biao Ding

Affiliation(s):  Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Beijing 100190, China; more

Corresponding email(s):   xinguanxin@126.com

Key Words:  Keystone transform, Matched filtering, MDCFT, Mismatching, Passive radar, Velocity estimation


Xin Guan, Li-hua Zhong, Dong-hui Hu, Chi-biao Ding. An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar[J]. Journal of Zhejiang University Science C, 2014, 15(11): 1071-1085.

@article{title="An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar",
author="Xin Guan, Li-hua Zhong, Dong-hui Hu, Chi-biao Ding",
journal="Journal of Zhejiang University Science C",
volume="15",
number="11",
pages="1071-1085",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400074"
}

%0 Journal Article
%T An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar
%A Xin Guan
%A Li-hua Zhong
%A Dong-hui Hu
%A Chi-biao Ding
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 11
%P 1071-1085
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400074

TY - JOUR
T1 - An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar
A1 - Xin Guan
A1 - Li-hua Zhong
A1 - Dong-hui Hu
A1 - Chi-biao Ding
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 11
SP - 1071
EP - 1085
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400074


Abstract: 
In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.

一种基于匹配滤波的外辐射源雷达相干积累及参数估计扩展处理流程

研究目的:通过分析外辐射源雷达中影响相干积累及参数估计的四种因素(匹配滤波失配、基于keystone变换的距离徙动校正精度、离散化采样及多普勒展宽),提出相应改进方案,获得系统的处理流程,提高相干积累增益及参数估计能力。
创新要点:通过多普勒滤波器组补偿匹配滤波器失配;通过对比分析不同keystone变换方法对积累结果的影响,选择精度较高且计算复杂度较低的Chirp-z变换;分析了离散化采样对外辐射源雷达目标检测的影响,采用插值法可提高性能(满足奈奎斯特采样率);分析了MDCFT的分辨能力及外辐射源雷达多普勒展宽校正能力,进而提出一种单站单帧速度估计方法。上述内容构成完整处理流程。
方法提亮:基于多普勒滤波器组的失配校正可将损失控制在1 dB以内;Chirp-z变换较线性差值法性能高3–4 dB;基于MDCFT的速度估计可利用单接收站、单帧数据获取目标的速度及运动方向估计。
重要结论:提出一种改进的相干积累及参数估计处理流程,将匹配滤波器失配损失控制在可忽略范围。采用Chirp-z变换精度高且适于实时处理;插值可降低离散化采样影响但会增加数据量,可根据实际需求选择;MDCFT有较好的多普勒展宽校正能力,校正中获得的相位二次项估计值可用于目标速度估计,实现单帧、单站目标速度估计。

关键词:Keystone变换;匹配滤波;MDCFT;失配;外辐射源雷达;速度估计

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Auger, F., Flandrin, P., 1995. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process., 43(5):1068-1089.

[2]Barbarossa, S., 1995. Analysis of multi-component LFM signals by a combined Wigner-Hough transform. IEEE Trans. Signal Process., 43(6):1511-1515.

[3]Berger, C., Demissie, B., Heckenbach, J., 2010. Signal processing for passive radar using OFDM waveforms. IEEE J. Sel. Topics Signal Process., 4(1):226-238.

[4]Celik, N., Youn, H.S., Omaki, N., et al., 2011. Experimental evaluation of passive radar approach for homeland security applications. IEEE Int. Symp. on Antennas and Propagation, p.224-227.

[5]Cherniakov, M., 2008. Bistatic Radar: Emerging Technology. John Wiley & Sons, West Sussex, England, p.301-302.

[6]Deng, T.D., Jiang, C.S., 2011. Evaluations of keystone transforms using several interpolation methods. IEEE CIE Int. Conf. on Radar, p.1876-1878.

[7]Dong, Y.Q., Tao, R., Zhou, S.Y., et al., 1999. Multicomponent chirp signal detection using fractional Fourier analysis. J. Syst. Eng. Electron., 10(3):57-63.

[8]Griffiths, H.D., 2011. Developments in bistatic and networked radar. IEEE CIE Int. Conf. on Radar, p.10-13.

[9]Guo, X., Sun, H.B., Wang, S.L., et al., 2002. Comments on “Discrete chirp-Fourier transform and its application to chirp rate estimation”. IEEE Trans. Signal Process., 50(12):3115.

[10]Howland, P., 2005. Passive radar systems. IEE Proc.-Radar Sonar Navig., 152(3):105-106.

[11]Howland, P., Maksimiuk, D., Reitsma, G., 2005. FM radio based bistatic radar. IEE Proc.-Radar Sonar Navig., 152(3):107-115.

[12]Li, Y., Zeng, T., Long, T., et al., 2006. Range migration compensation and Doppler ambiguity resolution by keystone transform. IEEE CIE Int. Conf. on Radar, p.1-4.

[13]Liu, L., Tao, R., Zhang, N., 2011. The CAF-DFRFT-KT algorithm for high-speed target detection in passive radar. Int. Conf. on Instrumentation, Measurement, Computer, Communication and Control, p.748-751.

[14]Malanowski, M., 2012. Detection and parameter estimation of manoeuvring targets with passive bistatic radar. IET Radar Sonar Navig., 6(8):739-745.

[15]Malanowski, M., Kulpa, K., Olsen, K.E., 2011. Extending the integration time in DVB-T based passive radar. Proc. 8th European Radar Conf., p.190-193.

[16]National Standardization Committee of China, 2006. GB 20600-2006. Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System (in Chinese).

[17]Palmer, J., Palumbo, S., Summers, A., et al., 2011. An overview of an illuminator of opportunity passive radar research project and its signal processing research directions. Dig. Signal Process., 21(5):593-599.

[18]Palmer, J., Harms, A., Searle, S.J., et al., 2013. DVB-T passive radar signal processing. IEEE Trans. Signal Process., 61(8):2116-2126.

[19]Petri, D., Moscardini, C., Martorella, M., et al., 2012. Performance analysis of the batches algorithm for range-Doppler map formation in passive bistatic radar. IET Int. Conf. on Radar Systems, p.1-4.

[20]Xia, X.G., 2000. Discrete chirp-Fourier transform and its application to chirp rate estimation. IEEE Trans. Signal Process., 48(11):3122-3133.

[21]Yardley, H.J., 2007. Bistatic radar based on DAB illuminators: the evolution of a practical system. IEEE Radar Conf., p.688-692.

[22]Zhao, Z.X., Wan, X.R., Zhang, D.L., et al., 2013. An experimental study of HF passive bistatic radar via hybrid sky-surface wave mode. IEEE Trans. Antennas Propag., 61(1):415-424.

[23]Zhu, D.Y., Li, Y., Zhu, Z.D., 2007. A keystone transform without interpolation for SAR ground moving-target imaging. IEEE Geosci. Remote Sens. Lett., 4(1):18-22.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE